
Kernel-estimated Nonparametric

Overlap-Based Syncytial Clustering

Israel A. Almodóvar-Rivera, PhD

Department of Biostatistics and Epidemiology

University of Puerto Rico

Medical Science Campus

Graduate School of Public Health

israel.almodovar@upr.edu

Introduction

• Commonly-used clustering algorithms usually find ellipsoidal,

spherical or other regular-structured clusters, but are more

challenged when the underlying groups lack formal structure

or definition.

• Syncytial clustering is the name that we introduce for

methods that merge groups obtained from standard clustering

algorithms in order to reveal complex group structure in the

data.

1

Methodology: Problem Setup

Let Ξ = {X 1,X 2, . . . ,X n} be a random sample of n

p-dimensional observations, with each

X i ∼
C∏

c=1

[fc(x)]ζic , (1)

where C is the number of groups, ζic = I(X i∈Cc) with I(Z) = 1 if

Z holds and 0 otherwise, fc(x) is the cluster-specific density of an

observation in the cth cluster and Cc is the set of observations in

the sample from that group.

2

Problem Set-up (cont’d)

We can model X i ∈ Ξ as X i ∼
∏C

c=1

∏kc
k=1[h(‖x − µCc

k ‖)]ζ
Cc
ik , or

equivalently as

X i ∼
K∏

k=1

[h(‖x − µ◦k‖)]ζ
◦
ik , (2)

where ζ◦ik and µ◦k for k = 1, 2, . . . ,K are renumerations,

respectively, of all the ζCc
ik and µCc

k for

k = 1, 2, . . . , kc , c = 1, 2, . . . ,C . Therefore, K =
∑C

c=1 kc ,

ζic =
∑kc

k=1 ζ
Cc
ik for c = 1, 2, . . . ,C and∑K

k=1 ζ
◦
ik ≡

∑C
c=1

∑kc
k=1 ζ

Cc
ik = 1 (however, both K and C are also

unknown).

3

Problem Set-up (cont’d)

From the K̂ -groups solution, define the ith residual

(i = 1, 2, . . . , n) as

ε̂i = X i −
K̂∑

k=1

µ̂◦k ζ̂
◦
ik ; (3)

where µ̂◦k is the multivariate mean vector of the observations in the

kth group and ζ̂◦ik = I(X i∈ kth k-means group). From (3), we

obtain the normed residuals, that is, we obtain

Ψ̂i =
√
ε̂′i ε̂i = ‖X i −

K̂∑
i=1

ζ̂◦ikµ̂
◦
k‖ (4)

for i = 1, 2, . . . , n; k = 1, 2, . . . , K̂ . These Ψ̂1, Ψ̂2, . . . Ψ̂n may be

viewed as a random sample with density function hΨ(·) and CDF

HΨ(·) and having support in [0,∞).

4

Pairwise overlap between groups

Maitra and Melnykov (2010) defined the pairwise overlap of two

mixture components as the sum of the misclassification

probabilities ωlk ≡ ωkl = ωl |k + ωk|l with

ωl |k = P[X is assigned to Cl | X is truly in Ck]. (5)

Overlap between two groups is an indicator of the extent to which

they are indistinguishable from each other.

5

Pairwise overlap between two k-means groups

The pairwise overlap (5) between two groups can generally be

calculated from HΨ(·) as

ωl |k = P (‖X − µl‖ < ‖X − µk‖ | X ∈ Ck) = 1− P
(
Ψk < Ψl(k)

)
(6)

where Ψk represents the normed residual obtained from the kth

group, and Ψl(k) represents the normed pseudo-residual which we

define as the norm of the remainder that is obtained by subtracting

the lth cluster mean µl from an observation X ∈ Ck .

6

Pairwise overlap between two k-means groups (cont’d)

Calculation of P
(
Ψk < Ψl(k)

)
is not as straightforward. So we

estimate P
(
Ψk < Ψl(k)

)
using a näıve average estimator

P̂
(
Ψk < Ψl(k)

)
=

1

n◦k

n∑
i=1

ζ̂◦ikĤΨ(‖X i − µ̂◦l ‖; b̂), (7)

where n◦k =
∑n

i=1 ζ̂
◦
ik , ĤΨ is a smooth estimator of the CDF and b̂

is the smoothing parameter. Similar estimates of ωk|l , and

therefore ωkl , can be obtained.

7

Pairwise overlap between two composite groups

A composite group is one that can be further decomposed into

sub-populations.

Let ωCl |Ck
be defined as in (5) but for composite groups. That is,

we use ωCl |Ck
rather than ωl |k in order to specify that the overlap

measure is between composite clusters Cl and Ck . Now

ωCl |Ck
= 1− P[minr∈Ck

‖X − µr‖ < minj∈Cl
‖X − µj‖ | X ∈ Ck].

8

Pairwise overlap between two composite groups (cont’d)

Suppose now that C◦s⊂k is the sth spherical sub-cluster of Ck with

mean µ◦s , s = 1, 2, . . . , |Ck |, with |Ck | being the number of

spherical sub-clusters in Ck . The density of X is defined through

its (sth) sub-cluster and so

P

(
min
r∈Ck

‖X − µr‖ ≤ y | X ∈ Ck

)
= 1− P (minr∈Ck

Ψr > y)

= 1− [1− P (Ψr ≤ y)]|Ck |(8)

where Ψr is a normed residual (obtained, for instance, from the

k-means solution) for the rth spherically-dispersed subgroup in the

kth cluster.

9

Pairwise overlap between two composite groups (cont’d)

From (5), and using the same ideas as in (7) we get the näıve

estimator

ω̂Cl |Ck
=

[
1− 1

nc

nc∑
i=1

ζ̂ icĤΨ(min
r∈Cl

‖X i − µr‖; b̂),

]|Ck |

(9)

where ĤΨ is a smooth estimator of the CDF, b̂ is the smoothing

parameter and similarly for ω̂Ck |Cl
, from where we calculate

ω̂ClCk
≡ ω̂CkCl

= ω̂Cl |Ck
+ ω̂Ck |Cl

.

10

KNOB-SynC Algorithm

The initial overlap calculation phase

This phase starts with the output of the k-means phase.

1. For each observation X i , i = 1, 2, . . . , n, compute its normed

residual Ψ̂i =
√
ε̂′i ε̂i where ε̂i is defined as in (3). Also for

each observation X i , obtain thenormed pseudo-residual

Ψ̂i ;l(k) = ‖X i − µ̂l‖ for X i ∈ Ck , and l 6= k ∈ {1, 2, . . . , K̂}.
2. Using the set of normed residuals {Ψ̂i ; i = 1, 2, . . . , n}, obtain

its kernel-estimated CDF.

3. For any two groups k 6= l ∈ {1, 2, . . . , K̂}, estimate the

pairwise overlap ω̂lk = ω̂l |k + ω̂k|l .

4. Obtain the estimated overlap matrix Ω̂
(1)

.

5. From the overlap matrix Ω̂
(1)

, calculate the generalized

overlap ¨̂ω. Call it ¨̂ω(1).

11

The merging phase

• The merging phase start only if ¨̂ω(1) 6≥ 4ˇ̂ω or if ¨̂ω(1) 6≈ 0.
• This phase iteratively proceeds for ` = 1, 2, . . . as per the

following steps:
1. Merge the groups with the maximum overlap and every pair of

groups with individual pairwise overlaps substantially larger

than the generalized overlap ¨̂ω(`). That is, merge every pair of

groups Ck , Cl , k 6= l such that ω̂
(`)
lk ≡ ˇ̂ω(`) or ω̂

(`)
lk > κ ¨̂ω(`).

2. Call the new merged group Cmin(k,l) and decrease the label

index.

3. Using (9), update the pairwise overlap measures that have

changed as a result of the merges. Call the updated measures

ω̂
(`+1)
CkCl

.

4. Obtain the updated overlap matrix (call it Ω̂
(`+1)

) and

calculate the updated generalized overlap ¨̂ω(`+1). Set

`← `+ 1.

12

Merging phase (cont’d)

1. The merging phase terminates if either ¨̂ω(`) > ¨̂ω(`−1), or
¨̂ω(`) ≈ 0, or ¨̂ω(`) ≈ ˇ̂ω(`). The terminating K̂ is the estimated

Ĉ of (1).

2. Final clustering solution: The grouping {C1,C2, . . . ,CĈ} at

the end of the merging phase is the final partition of the

dataset. We therefore have a total of Ĉ general-shaped

groups in the dataset.

13

Example: Aggregation dataset

●

●

●
●●

●
●
●

●
●

●
●

●

●
●
●●

●●

●

●
●

●

●

●●

●

●●
●
●

●
●
●

●
●

●
●

●

●

●

●
●

●●

(a) K̂ = 14

●

●

●
●●

●
●
●

●
●

●
●

●

●
●
●●

●●

●

●
●

●

●

●●

●

●●
●
●

●
●
●

●
●

●
●

●

●

●

●
●

●●

(b) Ĉ = 8

●

●

●
●●

●
●
●

●
●

●
●

●

●
●
●●

●●

●

●
●

●

●

●●

●

●●
●
●

●
●
●

●
●

●
●

●

●

●

●
●

●●

(c) Ĉ = 7

14

13

12

11

10

9

8

7

6

5

4

3

2

1 2 3 4 5 6 7 8 9 10 11 12 13

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.01 0 0 0 0 0

0 0 0 0 0 0 0.02 0 0 0

0 0.020.01 0 0 0 0 0 0

0 0 0 0 0.01 0 0 0

0 0 0 0 0.01 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0.010.02

0 0

0

(d) ¨̂ω = 0.0013

7

6

5

4

3

2

1 2 3 4 5 6

0 0 0 0 0 0

0 0 0.01 0 0

0 0 0 0

0 0 0

0 0

0

(e) ¨̂ω = 0.0008

7

6

5

4

3

2

1 2 3 4 5 6

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

0

0.002

0.004

0.007

0.009

0.011

0.013

0.016

0.018

0.02

(f) ¨̂ω =10−6 14

Competing methods

Method Author Purpose

K-mH Peterson et al. (2018) Syncytial

MMC Baudry et al. (2010) Syncytial

DEMP Hennig (2010) Syncytial

DEMP+ Melnykov (2016) Syncytial

EAC Fred and Jain (2005) Frequency

GSL-NN Stuetzle and Nugent (2010) Connectivity

Spectral - Connectivity

kernel k-means - Connectivity

DBSCAN* Campello et al. (2013) Connectivity

Density peaks Rodriguez and Laio (2014) Mode

PGMM McNicholas and Murphy (2008) Model-based

MSAL Franczak et al. (2013) Model-based

MGHD Browne and McNicholas (2015) Model-based
15

Shape datasets used in the two-dimensional evaluations

●

●
●●

●

●

●

●●

●

●
●

●

●
●
●

●●
●

●●●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●
●

●
●

●●
●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●
●●

●
●●●
●
●●●

●
●
●●
●
●
●
●
●●●●●
●●●●
●

●

●

●

●●●
●●
●
●

●●

●
●
●●

●

●
●●

●●●●
●●●
●

●
●
●●●
●●

●
●

●

●
●
●
●
●
●

●
●
●●

●●

●

●
●
●

●

●
●
●
●●

●●
●
●●
●

●

●●
●
●●

●

●

●●●●●

●●

●

●

●

●

●●

●
●●
●
●

●

●

●

●●●

●

●●

●
●

●●

●●●●●

●●●

●

●

●●●●

●
●●●●●

●●

●●●

●●

●

●
●●

●●

●

●●
●●
●

●●●

●●●

●●

●

●

●

●●

●
●

●●●
●
●
●

●

●
●●

●●●

●

●

●

●

●●

●

●●●
●
●

●

●

●

●●

●
●

●

●●●

●
●

●●

●

●●●

●●●●

●●●

●●

●

●

●●

●●●

●●●●●

●●●●

●●

●

●

●●●●

●●

●●

●●●

●

●●●●

●

●
●

●●

●

●

●

●●●

●●●●●●
●

●

●

●●●●

●

●●

●●

●

●

●

●●●

●●●●●

●●

●●●

●●

●●

●●●

●●

●●

●

●

●

●●

●●

●

●

●●

●●

●

●●

●

●

●●●●

●

●

●●

●●●●

●●●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●●

●●●

●

●

●

●●●●●

●

●●

●●●●●

●

●

●

●●

●●●●

●

●

●●●

●

●●

●●●

●

●

●

●●●

●

●●●

●●●

●●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●●●

●●

●●

●●

●●●

●●●●

●

●

●

●●

●●

●

●

●

●●

●●

●●

●●●

●●●●

●●

●

●

●

●●●

●●●●

●

●●●●

●●●●

●●

●●

●

●●

●●

●●●

●

●●

●

●

●●

●

●

●

●●

●●

●

●●

●

●●●●●●

●●●

●●

●

●

●●●●●●●

●●

●●●●●

●

●●

●
●

●●

●●

●●

●●●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●●

●●●

●

●

●

●●●●

●●●●●●

●

●

●●●

●

●●

●●●

●

●

●

●

●

●

●●●

●

●

●

●●●●●

●

●●

●●

●

●●●●

●

●●

●●●

●●

●

●●●●

●

●●

●

●

●

●●

●

●

●
●

●

●●

●●●
●

●●●
●●●

●

●●

●●

●●

●●

●

●

●●

●

●

●●
●●●●●

●

●

●

●●●

●

●

●●●●●

●●
●

●●

●

●●

●

●●
●●●

●

●●●

●

●

●
●●●

●●

●●●●●●

●

●

●●

●

●●●●

●●

●

●

●●●●●

●

●●

●

●

●●

●

●●●
●

●●●

●

●

●●●●

●●

●

●●

●●●

●●

●
●

●

●

●●

●

●●●
●●

●●

●●

●●

●●●●

●●
●●

●●●

●
●

●●

●
●●
●●

●
●●
●

●

●●

●

●
●

●●

●

●●●

●●●●

●

●

●

●

●●
●●
●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●●●●●

●

●
●●●

●

●

●●●●
●
●●●

●

●

●

●

●●●●

●

●

●
●
●
●●
●●

●
●●
●●
●

●

●

●
●●
●

●
●

●
●

●●●

●●
●

●

●

●●
●●
●
●

●

●●
●
●

●●●●

●●

●
●
●●
●●●●●●
●●●
●
●
●●●●●
●
●
●
●
●
●

●

●

●●●

●
●

●●

●●

●

●
●
●
●●
●●●
●
●
●●●
●
●
●●●
●●
●●●
●●●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●
●
●●●●
●

●

●●

●●

●●
●

●
●
●
●
●●
●
●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●
●

●
●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●
●
● ●

●

●

●

●

●
●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●
●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●
●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●
●●●●●

●●●●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●●

●●●●●●●●●●
●●●●●

●●●●●

●●●●●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●●

●●

●

●●
●
●
●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●●
●

●
●

●
●●
●

●

●

●
●

●

●
●

●

●

●

●●●

●●

●●

●
●●●
●

●

●
●
●

●

●

●

●
●
●

●●

●
●

●

●

●●
●

●
●

●

●

●
●
●●

●●
●

●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●●
●
●
●
●

●

●
●
●

●

●

●

●●
●
●●

●
●
●

●●●●
●

●●
●

●

●
●
●
●●
●

●

●

●●
●

●

●
●●

●
●
●

●●
●
●

●
●

●●
●
●●
●●
●
●●●
●

●
●
●
●
●

●

●●
●

●

●

●
●●●

●

●●

●●
●

●

●

●

●

●
●●

●

●

●●

●

●

●
●●

●

●
●
●●●●

●

●●

●●●●
●
●●
●
●

●
●
●

●

●
●
●

●
●

●●

●

●●

●
●●●●
●

●
●
●

●

●

●●
●

●
●
●
●

●●●

●

●

●

●
●

●
●●
●●
●
●

●

●

●●

●

●

●

●

●●●●

●

●

●●●
●
●
●
●●●
●
●

●

●

●

●
●●
●●

●●
●●

●
●

●

●
●●●

●
●

●
●●●●
●●●
●

●
●

●
●●●
●

●●

●

●●

●

●
●
●
●●

●
●
●

●●

●●

●

●

●

●●
●

●
●

●

●

●

●

●●

●
●

●●
●●

●

●
●
●●

●
●

●
●●●●
●

●●

●

●
●●
●
●
●

●

●

●●
●
●
●

●
●
●
●●
●

●

●

●
●

●
●●●

●

●

●
●
●
●

●

●●

●
●

●

●●
●

●
●

●●
●●

●

●
●
●●

●●

●

●

●
●
●

●
●

●

●●

●

●
●●

●

●●●●●
●

●

●
●●●

●

●
●
●●

●
●

●
●
●
●

●

●

●

●
●
●

●

●
●

●

●●●●

●

●
●

●

●

●

●
●

●

●●

●●

●
●

●

●

●

●
●

●●

●
●

●
●
●
●

●
●
●

●

●

●

●●

●

●
●

●

●
●●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●●

●●
●
●

●

●
●
●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●●

●

●

●

●

●
●●

●

●

●
●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●
●

●
●
●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●
●

●
●

●

●

●
●●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●
●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●
●
●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●●

●

●
●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●
●
●
●

●
●

●

●●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●●

●

●
●
●

●

●

●●●●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●●

●●

●

●

●

●
●

●

●

●
●
●●

●

●

●
●●

●

●
●

●

●

●●

●

●

●●●
●
●●
●

●

●
●

●

●●

●●

●

●

●

●

●
●

●
●●
●
●●

●●
●●●

●

●
●●●
●
●●●
●
●●
●
●●

●●
●●
●
●
●●●●
●
●

●

●

●
●
●

●●
●●

●

●

●●

●
●
●
●●●

●
●●
●

●

●
●

●
●●
●●●
●●●
●●
●
●

●
●●●

●

●

●

●●●
●
●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●●
●
●

●

●●●
●●
●

●

●
●●
●●●●

●
●●
●

●

●●●●
●

●

●
●
●

●
●

●●

●

●

●
●
●

●●

●
●

●●
●
●

●

●

●

●

●●
●
●●

●

●
●●
●
●●
●

●

●●●

●

●

●
●●
●
●

●
●
●
●●●

●●

●

●

●
●

●
●
●●
●
●

●

●
●
●

●●
●

●

●

●

●

●

●
●
●
●●
●
●

●●●●
●

●
●●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●●
●
●

●
●
●

●

●
●

●
●
●
●●●
●
●

●

●

●

●●●
●

●
●
●

●

●

●

●

●

●

●
●
●●

●

●
●

●
●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●●●
●●
●
●

●

●
●

●

●
●
●●
●
●
●
●

●●
●

●

●●

●

●
●
●

●●●
●

●

●●
●●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●●

●
●
●

●
●

●
● ●

● ●
● ●

● ●
●

●
●

●●
●●

●

●
●

●
●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●●●
●
●

●
●
●

●●

●
●

●

●●

●
●

●

●●

●

●●●
●

●

●

●●

●
●

●

●

●

●

●

●
●
●●

●

●
●
●
●

●●●●

●
●
●
●
●
●
●

●●

●

●●●

●
●

●

●
●

●

●

●

●

●●

●
●

SCX−Bananas Spiral SSS XXXX

Bullseye−Cigarette Compound Half−ringed clusters Path−based

7−Spherical Banana−Clump Bananas−Arcs Bullseye

Figure 1: Shape datasets used in the two-dimensional performance

evaluations.

16

Two-dimensional datasets results

0.00

0.25

0.50

0.75

1.00

7–
Sp
he
ric
al

A
gg
re
ga
tio
n

B
an
an
as
–A
rc
s

B
an
an
a–
cl
um
p

B
ul
lse
ye

B
ul
lse
ye
–C
ig
ar
et
te

C
om
po
un
d

H
al
f–
rin
ge
d
cl
us
te
rs

Pa
th
–b
as
ed

SC
X
–B
an
an
as

Sp
ira
l

SS
S

X
X
X
X

A
d
ju
st
ed

R
an

d
In
d
ex

KNS

K-mH

DM

DM+

MMC

EAC

GSN

SpC

kk-m

DBSCAN*

DP

PGMM

MSAL

MGHD

(a) Performance by dataset

0.00

0.25

0.50

0.75

1.00

K
N
S

K
-m
H

D
M

D
M
+

M
M
C

EA
C

G
SN Sp

C
kk
-m

D
B
SC
A
N
*

D
P

PG
M
M

M
SA
L

M
G
H
D

A
d
ju
st
ed

R
an

d
In
d
ex

(b) Performance by method

Figure 2: Performance of KNOB-SynC (abbreviation: KNS), K-mH,

DEMP (DM), DEMP+ (DM+), MMC, EAC, GSL-NN (GSN), spectral

clustering (SpC), kernel k-means (kk-m), DBSCAN∗, DP, PGMM, MSAL

and MGHD.
17

High-dimensional datasets

Dataset (n, p,K ,m)

Simplex-7 (560, 7, 7, 7)

E.coli (336, 7, 7, 5)

Wines-13 (178, 13, 3, 17)

Wines-27 (178, 27, 3, 26)

Olive Oils-Area (572, 8, 9, 8)

Olive Oils-Region (572, 8, 3, 8)

Image (2310, 19, 7, 8)

Yeast (1484, 8, 10, 6)

ALL (215, 1000, 7, 42)

Zipcode (2000, 256, 10, 33)

Pendigits (10992, 16, 10, 18)

18

High-dimensional datasets

0.00

0.25

0.50

0.75

1.00

Si
m
pl
ex
–7

E.
co
li

W
in
es
–
13

W
in
es
–
27

O
liv
e
O
ils
–
A
re
a

O
liv
e
O
ils
–
R
eg
io
n

Im
ag
e

Ye
as
t

A
LL

Zi
pc
od
e

Pe
nd
ig
its

A
d
ju
st
ed

R
an

d
In
d
ex

KNS

K-mH

DM

DM+

MMC

EAC

GSN

SpC

kk-m

DBSCAN*

DP

PGMM

MSAL

MGHD

(a) Performance by dataset

0.00

0.25

0.50

0.75

1.00

K
N
S

K
-m
H

D
M

D
M
+

M
M
C

EA
C

G
SN Sp

C
kk
-m

D
B
SC
A
N
*

D
P

PG
M
M

M
SA
L

M
G
H
D

A
d
ju
st
ed

R
an

d
In
d
ex

(b) Performance by method

Figure 3: Performance of KNOB-SynC (abbreviation: KNS), K-mH,

DEMP (DM), DEMP+ (DM+), MMC, EAC, GSL-NN (GSN), spectral

clustering (SpC), kernel k-means (kk-m), DBSCAN∗, DP, PGMM, MSAL

and MGHD.
19

KNOB-SynC in the presence of scatter

• Maitra and Ramler (2009) developed the k-clips algorithm for

k-means clustering in the presence of scatter.

• We use the first 100 images of the Olivetti faces database

Samaria and Harter (1994) that were used by Rodriguez and

Laio (2014). These are 10 faces each of 10 individuals taken

at different angles and under different light conditions.

• Each 112× 92 image has a total of 10,304 pixels so we use

the first 37 KPCs.

• We started with 70 initial groups. KNOB-SynC’s found 9

large groups, 5 small groups and 1 scatter and R = 0.902.

20

Olivetti faces database

(a) KNOBSynC: R = 0.90 (b) DP: R = 0.22

Figure 4: Clusters of the first 100 images in the Olivetti database

obtained by (a) KNOB-SynC and (b) DP.
21

Activation detection in a fMRI finger-tapping task experiment

• One objective of fMRI is to determine cerebral regions that

respond to a task or particular stimulus.

• A typical approach relates, the observed Blood Oxygen Level

Dependent (BOLD) time course sequence at each image voxel

to the expected BOLD response by fitting a general linear

model.

• Attempts to use clustering algorithms have been made, like

k-means but in general, is not a good performer.

22

Activation detection in a fMRI finger-tapping task experiment

• This experiment is from a right-hand finger-tapping

experiment of a right-hand-dominant male and was acquired

over twelve regularly-spaced sessions over the course of two

months.

• At each of the n = 179364 voxels, we computed a Z -scores to

test the hypothesis that the expected BOLD levels are

significantly related to the right-hand tapping at a voxel.

23

Activation detection in a fMRI finger-tapping task experiment

(a) KNOB-SynC (b) AR-FAST

−20

−10

0

10

20

5

4

3

2

1 2 3 4

0.15 0.27 0.37 0.2

0.17 0.35 0.16

0.2 0.27

0.22

(c)

KNOB-SynC

5

4

3

2

1 2 3 4

0.06 0.1 0.15 0

0 0 0

0.06 0.17

0.25

(d) AR-FAST

0

0.04

0.09

0.13

0.18

0.22

0.27

0.31

0.36

0.4

24

Conclusion and further work

• This work has proposed a syncytial clustering algorithm called

KNOB-SynC that merges groups found by standard clustering

algorithms.

• It does so in a fully data-driven and objective way.

• KNOB-SynC can be implemented using the R package RSynC

available at https://github.com/ialmodovar/RSynC.

• Extending KNOB-SynC to a semi-supervised framework.

25

	KNOB-SynC Algorithm

