What is a cone?

Anastasia Chavez

President's Postdoctoral Fellow
NSF Postdoctoral Fellow
UC Davis

Field of Dreams Conference 2018

Roadmap for today

(2) Vertex/Ray Description

3 Hyperplane Description
4. An Application

Intuitive idea of a Cone

"Set of vectors closed under positive combinations"

Intuitive idea of a Cone

"Set of vectors closed under positive combinations"
Example
For $V=\left\{\left(1, \frac{1}{2}\right),(1,2),(2,1),\left(\frac{1}{2}, \frac{3}{4}\right)\right\}$

Intuitive idea of a Cone

"Set of vectors closed under positive combinations"

Example

For $V=\left\{\left(1, \frac{1}{2}\right),(1,2),(2,1),\left(\frac{1}{2}, \frac{3}{4}\right)\right\}$, the cone of V is
$\mathcal{C}(V)=\left\{\left.a_{1}\left(1, \frac{1}{2}\right)+a_{2}(1,2)+a_{3}(2,1)+a_{4}\left(\frac{1}{2}, \frac{3}{4}\right) \right\rvert\, a_{i} \in \mathbb{R}_{\geq 0}\right\}$

Vertex/Ray Description

"The space generated by a finite set of vertices/rays"

- Let $V=\left\{v_{1}, v_{2}, \ldots, v_{i}, r_{i+1}, \ldots, r_{m}\right\}$ be a set of vertices and rays in \mathbb{R}^{n}.
- The cone generated by V is

$$
\mathcal{C}(V)=\left\{\lambda_{1} v_{1}+\cdots+\lambda_{m} r_{m} \mid \lambda_{i} \in \mathbb{R}_{\geq 0}^{n}\right\}
$$

Vertex/Ray Description

"The space generated by a finite set of vertices/rays"

- Let $V=\left\{v_{1}, v_{2}, \ldots, v_{i}, r_{i+1}, \ldots, r_{m}\right\}$ be a set of vertices and rays in \mathbb{R}^{n}.
- The cone generated by V is

$$
\mathcal{C}(V)=\left\{\lambda_{1} v_{1}+\cdots+\lambda_{m} r_{m} \mid \lambda_{i} \in \mathbb{R}_{\geq 0}^{n}\right\}
$$

Hyperplane Description

"The intersection of halfspaces"

$$
\mathcal{H}_{1}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \left\lvert\, \frac{1}{2} x_{1}-x_{2} \leq 0\right.\right\}
$$

Definition

- A hyperplane H is the set $\left\{x \in \mathbb{R}^{n} \mid a(x)=0\right\}$, for linear map a over \mathbb{R}^{n}.
- A closed halfspace \mathcal{H} is choosing a "side" of H :

$$
\left\{x \in \mathbb{R}^{n} \mid a(x) \geq 0\right\}
$$

Hyperplane Description

"The intersection of halfspaces"

$$
\begin{aligned}
& \mathcal{H}_{1}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \left\lvert\, \frac{1}{2} x_{1}-x_{2} \leq 0\right.\right\} \\
& \mathcal{H}_{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid 2 x_{1}-x_{2} \geq 0\right\}
\end{aligned}
$$

Definition

- A hyperplane H is the set $\left\{x \in \mathbb{R}^{n} \mid a(x)=0\right\}$, for linear map a over \mathbb{R}^{n}.
- A closed halfspace \mathcal{H} is choosing a "side" of H :

$$
\left\{x \in \mathbb{R}^{n} \mid a(x) \geq 0\right\}
$$

Hyperplane Description

"The intersection of halfspaces"

Definition

- A convex cone \mathcal{C} is a collection of closed halfspaces A, such that $\mathcal{C}=\left\{x \in \mathbb{R}^{n} \mid A x \leq 0\right\}$.

Cones from vectors/rays and hyperplanes

Theorem (Weyl-Minkowski Theorem)
A convex polyhedral cone has both a vertex/ray and hyperplane description, which are equivalent.

Where Cones Commonly Show Up

- Solvability of a general system of linear equations (Farka's lemma)
- Integer point enumeration, Ehrhart Theory
- Discrete optimization, linear programming, feasibility problems
- Computational Complexity

Where else might they show up?

Using Cones to Understand Graphs

Definition

- A graph $G=(V, E)$ is a set of vertices and edges.
- A cycle of G is a set of edges forming a path that returns to itself only once.

Example

Using Cones to Understand Graphs

We can describe all the cycles of a graph using vectors!

- Let $c \in\{0,1\}^{n}$ be the indicator vector of a cycle of graph G, where $c_{i}=1$ if $e_{i} \in E$ and 0 if not.

Example

Cycle in $G=(1,0,1,0,1,1)$

Using Cones to Understand Graphs

We can describe all the cycles of a graph using vectors!

- Let $c \in\{0,1\}^{n}$ be the indicator vector of a cycle of graph G, where $c_{i}=1$ if $e_{i} \in E$ and 0 if not.

Example

$$
C=\left(\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

- Every column is a cycle and rows are indexed by edges.

Using Cones to Understand Graphs

Using the set of cycles of G, we can generate the cone \mathcal{C}_{G} over all cycles of G :

- $\mathcal{C}_{G}=\left\{\lambda_{1} c_{1}+\cdots+\lambda_{n} c_{n} \mid \lambda \in \mathbb{R}^{n}\right\}$

Example

$$
\mathcal{C}_{G}=\left\{\left.\lambda_{1}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right)+\lambda_{2}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right)+\cdots+\lambda_{7}\left(\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1 \\
1
\end{array}\right) \right\rvert\, \lambda_{i} \in \mathbb{R}^{7}\right\}
$$

Using Cones to Understand Graphs

Why use cones? For a new perspective!

- CDC conjecture: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.

Using Cones to Understand Graphs

Why use cones? For a new perspective!

- CDC conjecture: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.

Using Cones to Understand Graphs

Why use cones? For a new perspective!

- CDC conjecture: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.

Using Cones to Understand Graphs

Why use cones? For a new perspective!

- CDC conjecture: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.

Using Cones to Understand Graphs

Why use cones? For a new perspective!

- CDC conjecture: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.

Via Cones: The integral cone of cycles of G always contains ($2,2, \ldots, 2$).

Using Cones to Understand Graphs

Why use cones? For a new perspective!

- CDC conjecture: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.

Via Cones: The integral cone of cycles of G always contains $(2,2, \ldots, 2)$.

- In general: Given vector $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, is there a set of cycles so that edge i is covered u_{i} many times?

Using Cones to Understand Graphs

Why use cones? For a new perspective!

- CDC conjecture: For any graph G, there exists a set of cycles covering the edges of G so that every edge is in exactly 2 cycles.

Via Cones: The integral cone of cycles of G always contains ($2,2, \ldots, 2$).

- In general: Given vector $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$, is there a set of cycles so that edge i is covered u_{i} many times?

Does the integral cone of cycles of G contain u?

References

> Beck and Robins, Computing the Continuous Discretely, Springer, 2015.
> De Loera, Hemmecke, and Köppe, Algebraic and Geometric Ideas in the Theory of Discrete Optimization, Society for Industrial and Applied Mathematics, 2012.
> Ziegler, Lectures on Polytopes, Springer, 1995.

About me

Thank you!

