# What is ... Harmonic Measure? 

## Steve Hofmann

University of Missouri-Columbia and Park City Mathematics Institute

November 4, 2017

## Introduction

We'll discuss harmonic measure from 2 points of view, both related to heat conduction:
(1) Physical/Probabilistic
(2) Solution of Boundary Value Problems

## Physical/Probabilistic Interpretation of Harmonic Measure

- Heat Conduction. Heat is conducted through a fluid by the transfer of kinetic energy from molecule to molecule.


## Physical/Probabilistic Interpretation of Harmonic Measure

- Heat Conduction. Heat is conducted through a fluid by the transfer of kinetic energy from molecule to molecule.
- Brownian Motion. Physically, the random motion of a particle suspended in a fluid, due to buffeting by the molecular collisions. (Theory developed by Einstein in 1905).


## Physical/Probabilistic Interpretation of Harmonic Measure

Let $\Omega$ be a connected open region (aka, a domain) in Euclidean space (in 2-D or 3-D, to keep things simple), with boundary (i.e., perimeter) $\partial \Omega$.

Consider a Brownian traveler starting from some point $P \in \Omega$, and eventually reaching the boundary $\partial \Omega$.

Let's momentarily fix this starting point $P$.

## Physical/Probabilistic Interpretation of Harmonic Measure

Let $\Omega$ be a connected open region (aka, a domain) in Euclidean space (in 2-D or 3-D, to keep things simple), with boundary (i.e., perimeter) $\partial \Omega$.

Consider a Brownian traveler starting from some point $P \in \Omega$, and eventually reaching the boundary $\partial \Omega$.

Let's momentarily fix this starting point $P$.

- Harmonic Measure. For a subset $A \subset \partial \Omega$, the harmonic measure of $A$, denoted $\omega^{P}(A)$, is the probability that a Brownian traveler's first contact with $\partial \Omega$ is somewhere in the set $A$.


## Physical/Probabilistic Interpretation of Harmonic Measure



## Physical/Probabilistic Interpretation of Harmonic Measure

Remarks.

- Harmonic measure gives a method of "measuring" the size of subsets of $\partial \Omega$.


## Physical/Probabilistic Interpretation of Harmonic Measure

Remarks.

- Harmonic measure gives a method of "measuring" the size of subsets of $\partial \Omega$.
- Harmonic measure is really a family of measures (a different one for each starting point $P$ ).


## Physical/Probabilistic Interpretation of Harmonic Measure

Remarks.

- Harmonic measure gives a method of "measuring" the size of subsets of $\partial \Omega$.
- Harmonic measure is really a family of measures (a different one for each starting point $P$ ).
- Harmonic measure is a probability measure; i.e., the total mass $\omega^{P}(\partial \Omega)=1$; i.e., every Brownian traveler from any given starting point $P$ will eventually reach the boundary with probability 1 .


## Physical/Probabilistic Interpretation of Harmonic Measure

Remarks (cont.).

- There are other (standard) ways to measure sets on the boundary: arclength in 2-D (the boundary is a curve), surface area in 3-D (the boundary is a surface). We denote these by $\sigma$, i.e., if $A$ is some piece of the boundary, then $\sigma(A)$ is the length of $A$ (in 2-D), or the surface area of $A$ (in 3-D).


## Physical/Probabilistic Interpretation of Harmonic Measure

Remarks (cont.).

- There are other (standard) ways to measure sets on the boundary: arclength in 2-D (the boundary is a curve), surface area in 3-D (the boundary is a surface). We denote these by $\sigma$, i.e., if $A$ is some piece of the boundary, then $\sigma(A)$ is the length of $A$ (in 2-D), or the surface area of $A$ (in 3-D).
- The harmonic measure size of a piece of the boundary depends on the shape of $\Omega$, relative to the starting point $P$; i.e., $\omega^{P}(A)$ will be small if $P$ is screened from $A$ by some other part of the boundary, while $\omega^{P}(A)$ will be large if Brownian travelers from P have easy access to $A$.


## Physical/Probabilistic Interpretation of Harmonic Measure



## Physical/Probabilistic Interpretation of Harmonic Measure

Fundamental question: how does harmonic measure compare to $\sigma$ ? E.g.,

- if the $\sigma$ size of $A$ is very small, is $\omega^{P}(A)$ small?


## Physical/Probabilistic Interpretation of Harmonic Measure

Fundamental question: how does harmonic measure compare to $\sigma$ ? E.g.,

- if the $\sigma$ size of $A$ is very small, is $\omega^{P}(A)$ small?
- If $\sigma(A)=0$, then does $\omega^{P}(A)=0$ ?


## Physical/Probabilistic Interpretation of Harmonic Measure

Fundamental question: how does harmonic measure compare to $\sigma$ ? E.g.,

- if the $\sigma$ size of $A$ is very small, is $\omega^{P}(A)$ small?
- If $\sigma(A)=0$, then does $\omega^{P}(A)=0$ ?
- ...also, vice versa...?

Not surprisingly, the answer to these questions is tied to the geometry of $\Omega$ and its boundary.

## Boundary Value Problem Interpretation of Harmonic Measure

Harmonic measure has another significance, which we again relate to heat conduction.

Consider a domain $\Omega$ as above, which is in a thermal steady-state, i.e., the temperature at each point in $\Omega$ does not change in time (although it may vary from one point to another).

For each point $P$ in $\Omega$, let $u(P)$ denote the temperature at the point $P$.

## Boundary Value Problem Interpretation of Harmonic Measure

For simplicity, let's look at the 2-D case. We may then write $P=(x, y)$, the usual coordinates in the Cartesian $x-y$ plane.

The temperature function $u$ satisfies the Steady-State Heat Equation, aka Laplace's Equation, which in 2-D is as follows:

$$
\Delta u:=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

I.e., we take the second order derivative in each of the $x$ and $y$ directions (and in the $z$ direction in 3-D), and then add them up.

## Boundary Value Problem Interpretation of Harmonic Measure

Fundamental question: Suppose we know the temperature at each point on the boundary $\partial \Omega$. We let $f(Q)$ denote the (known) temperature at each point $Q \in \partial \Omega$. Does this determine the temperature function inside $\Omega$ ? And can we compute the temperatures inside, from the boundary temperatures?
I.e., can we find the temperature function $u$ inside $\Omega$, provided that we know that $u=f$ on the boundary?

## Boundary Value Problem Interpretation of Harmonic Measure

I.e., we are asking if we can solve the following "Boundary Value Problem":

$$
(B V P)\left\{\begin{array}{l}
\Delta u=0 \text { in } \Omega \\
u=f \text { on } \partial \Omega
\end{array}\right.
$$

## Boundary Value Problem Interpretation of Harmonic Measure

Answer: if $\partial \Omega$ is not too terrible (and it can actually be fairly wild) then we can do this using the harmonic measure formula:

$$
\begin{equation*}
u(P)=\int_{\partial \Omega} f(Q) d \omega^{P}(Q) \tag{1}
\end{equation*}
$$

What does this mean? Let's give an intuitive explanation by analogy to integration in first year calculus.

## Boundary Value Problem Interpretation of Harmonic Measure

Recall that $\omega^{P}$ measures (in a certain sense), the size of sets on $\partial \Omega$. In 1-D calculus, we measure the size of an interval [a,b] by simply computing its length, which we can express as an integral:

$$
\ell[a, b]=b-a=\int_{a}^{b} 1 d x .
$$

I.e., $d x$ corresponds to standard 1-D size (the length); analogously, integration with respect to $d \omega^{P}$ corresponds to the harmonic measure size.

## Boundary Value Problem Interpretation of Harmonic Measure

More generally, in place of $\int_{a}^{b} 1 d x$, we can consider

$$
\int_{a}^{b} f(x) d x
$$

for any (let's say continuous) function $f(x)$.
The integral in formula (1) above (repeated here):

$$
u(P)=\int_{\partial \Omega} f(Q) d \omega^{P}(Q)
$$

is again analogous to this.

## Thank you!

