What is a convex body?

Galyna V. Livshyts

Mathematical Sciences Research Institute, Berkeley, CA

Field of dreams, Saint Louis, MO November, 2017.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Throughout the talk, *n* shall stand for a positive integer, usually large.

< 行

医下 不正下

- Throughout the talk, *n* shall stand for a positive integer, usually large.
- We shall study geometry of \mathbb{R}^n , an *n*-dimensional space.

.⊒...>

- Throughout the talk, *n* shall stand for a positive integer, usually large.
- We shall study geometry of \mathbb{R}^n , an *n*-dimensional space.
- The elements of \mathbb{R}^n are vectors with *n* coordinates: $x = (x_1, ..., x_n) \in \mathbb{R}^n$.

∢ ≣ ≯

э.

- Throughout the talk, *n* shall stand for a positive integer, usually large.
- We shall study geometry of \mathbb{R}^n , an *n*-dimensional space.
- The elements of \mathbb{R}^n are vectors with *n* coordinates: $x = (x_1, ..., x_n) \in \mathbb{R}^n$.
- Given vectors $x, y \in \mathbb{R}^n$, with $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$, their sum is the vector $x + y = (x_1 + y_1, ..., x_n + y_n)$.

- Throughout the talk, *n* shall stand for a positive integer, usually large.
- We shall study geometry of \mathbb{R}^n , an *n*-dimensional space.
- The elements of \mathbb{R}^n are vectors with *n* coordinates: $x = (x_1, ..., x_n) \in \mathbb{R}^n$.
- Given vectors $x, y \in \mathbb{R}^n$, with $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$, their sum is the vector $x + y = (x_1 + y_1, ..., x_n + y_n)$.
- For $\lambda > 0$, we have $\lambda x = (\lambda x_1, ..., \lambda x_n)$.

- Throughout the talk, *n* shall stand for a positive integer, usually large.
- We shall study geometry of \mathbb{R}^n , an *n*-dimensional space.
- The elements of \mathbb{R}^n are vectors with *n* coordinates: $x = (x_1, ..., x_n) \in \mathbb{R}^n$.
- Given vectors $x, y \in \mathbb{R}^n$, with $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$, their sum is the vector $x + y = (x_1 + y_1, ..., x_n + y_n)$.
- For $\lambda > 0$, we have $\lambda x = (\lambda x_1, ..., \lambda x_n)$.
- Scalar product $\langle x, y \rangle = x_1 y_1 + ... + x_n y_n$.

- Throughout the talk, *n* shall stand for a positive integer, usually large.
- We shall study geometry of \mathbb{R}^n , an *n*-dimensional space.
- The elements of \mathbb{R}^n are vectors with *n* coordinates: $x = (x_1, ..., x_n) \in \mathbb{R}^n$.
- Given vectors $x, y \in \mathbb{R}^n$, with $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$, their sum is the vector $x + y = (x_1 + y_1, ..., x_n + y_n)$.
- For $\lambda > 0$, we have $\lambda x = (\lambda x_1, ..., \lambda x_n)$.
- Scalar product $\langle x, y \rangle = x_1 y_1 + ... + x_n y_n$.

A set K in \mathbb{R}^n is called convex if for any pair of points $x, y \in K$, the interval [x, y] is fully contained in K.

A set K in \mathbb{R}^n is called convex if for any pair of points $x, y \in K$, the interval [x, y] is fully contained in K.

• Equivalently, set K is convex if for every $x, y \in K$ and for every $\lambda \in [0,1]$, the vector $\lambda x + (1 - \lambda)y \in K$.

A set K in \mathbb{R}^n is called convex if for any pair of points $x, y \in K$, the interval [x, y] is fully contained in K.

- Equivalently, set K is convex if for every $x, y \in K$ and for every $\lambda \in [0,1]$, the vector $\lambda x + (1 \lambda)y \in K$.
- A convex body in \mathbb{R}^n is a compact convex set with non-empty interior.

A set K in \mathbb{R}^n is called convex if for any pair of points $x, y \in K$, the interval [x, y] is fully contained in K.

- Equivalently, set K is convex if for every $x, y \in K$ and for every $\lambda \in [0,1]$, the vector $\lambda x + (1 \lambda)y \in K$.
- A convex body in \mathbb{R}^n is a compact convex set with non-empty interior.
- A body K is called symmetric if $x \in K \implies -x \in K$.

(4月) キョン キョン

• Convex hull of N points $x_1, ..., x_N$

$$conv(x_1,...,x_N) = \{y \in \mathbb{R}^n : y = \lambda_1 x_1 + ... + \lambda_N x_N, \lambda_i \ge 0, \sum \lambda_i = 1\}.$$

is a convex body:

- ∢ ≣ ▶

3

• Convex hull of N points x₁,...,x_N

$$conv(x_1,...,x_N) = \{y \in \mathbb{R}^n : y = \lambda_1 x_1 + ... + \lambda_N x_N, \lambda_i \ge 0, \sum \lambda_i = 1\}.$$

is a convex body:

• An intersection of *N* half-spaces is a convex body:

• Convex hull of N points x₁,...,x_N

$$conv(x_1,...,x_N) = \{y \in \mathbb{R}^n : y = \lambda_1 x_1 + ... + \lambda_N x_N, \lambda_i \ge 0, \sum \lambda_i = 1\}.$$

is a convex body:

• An intersection of *N* half-spaces is a convex body:

• Moreover, every convex body is an intersection of (very many) half-spaces, as well as the convex hull of its boundary points.

CUBE

The unit cube in \mathbb{R}^n is the set of points

$$B_{\infty}^{n} = [-1,1]^{n} = \{ x \in \mathbb{R}^{n} : |x_{i}| \le 1, i = 1, ..., n \}.$$

표⊁ 표

CUBE

The unit cube in \mathbb{R}^n is the set of points

$$B_{\infty}^{n} = [-1,1]^{n} = \{x \in \mathbb{R}^{n} : |x_{i}| \le 1, i = 1, ..., n\}.$$

프 🕨 🖂 프

SIMPLEX

Convex hull of n+1 points in \mathbb{R}^n is called simplex:

< 🗗 🕨

→ Ξ → → Ξ →

SIMPLEX

Convex hull of n+1 points in \mathbb{R}^n is called simplex:

▲ 伊 ▶ ▲ 王 ▶

< ∃⇒

DIAMOND

The diamond, or cross-polytope is the set defined as

$$B_1^n = \{x \in \mathbb{R}^n : |x_1| + \dots + |x_n| \le 1\}.$$

In other words, B_1^n is the convex hull of points (0, 0, ..., 1, 0, ..., 0), (0, 0, ..., -1, 0, ..., 0), ...

イロト イポト イヨト イヨト

э

DIAMOND

The diamond, or cross-polytope is the set defined as

$$B_1^n = \{ x \in \mathbb{R}^n : |x_1| + \dots + |x_n| \le 1 \}.$$

In other words, B_1^n is the convex hull of points (0, 0, ..., 1, 0, ..., 0), (0, 0, ..., -1, 0, ..., 0), ...

・ 「 ト ・ ヨ ト ・ ヨ ト

э

BALL

The unit ball in \mathbb{R}^n is the set

$$B_2^n = \{ x \in \mathbb{R}^n : |x_1|^2 + \ldots + |x_n|^2 \le 1 \}.$$

・ロト ・四ト ・ヨト ・ヨト

BALL

The unit ball in \mathbb{R}^n is the set

$$B_2^n = \{ x \in \mathbb{R}^n : |x_1|^2 + \ldots + |x_n|^2 \le 1 \}.$$

(日)

(★ 문) 제 문

L_p-BALL

More generally, for $p \ge 1$, L_p -ball in \mathbb{R}^n is the set

$$B_p^n = \{ x \in \mathbb{R}^n : |x_1|^p + \dots + |x_n|^p \le 1 \}.$$

문 🕨 🗄 문

Lp-BALL

More generally, for $p \ge 1$, L_p -ball in \mathbb{R}^n is the set

$$\mathsf{B}_{p}^{n} = \{ x \in \mathbb{R}^{n} : |x_{1}|^{p} + ... + |x_{n}|^{p} \leq 1 \}.$$

- p = 2 usual "euclidean" ball;
- p = 1 cross-polytope;
- *p* = ∞ − cube!

э

Note that

•
$$\frac{1}{\sqrt{n}}$$
 Ball \subset Diamond

< (□) >

≪ ≣ ≯

Note that

•
$$\frac{1}{\sqrt{n}}$$
Ball \subset Diamond \subset Ball

< (□) >

< ∃ >

Note that

• $\frac{1}{\sqrt{n}}$ Ball \subset Diamond \subset Ball \subset Cube

・ 同 ト ・ ヨ ト ・ ヨ ト …

Note that

• $\frac{1}{\sqrt{n}}$ Ball \subset Diamond \subset Ball \subset Cube $\subset \sqrt{n} \cdot$ Ball

< ∃⇒

э

Volumes of convex bodies

Volume of the unit ball

By Fubbini's theorem,

$$Vol_n(B_2^n) = \int_{-1}^1 Vol_{n-1}(\sqrt{1-t^2}B_2^{n-1})dt =$$

・ロト ・四ト ・ヨト ・ヨト

Volumes of convex bodies

Volume of the unit ball

By Fubbini's theorem,

$$Vol_{n}(B_{2}^{n}) = \int_{-1}^{1} Vol_{n-1}(\sqrt{1-t^{2}}B_{2}^{n-1})dt = Vol_{n-1}(B_{2}^{n-1})\int_{-1}^{1}(1-t^{2})^{\frac{n-1}{2}}dt;$$

・ロト ・四ト ・ヨト ・ヨト

Ξ.

By Fubbini's theorem,

$$Vol_{n}(B_{2}^{n}) = \int_{-1}^{1} Vol_{n-1}(\sqrt{1-t^{2}}B_{2}^{n-1})dt = Vol_{n-1}(B_{2}^{n-1})\int_{-1}^{1}(1-t^{2})^{\frac{n-1}{2}}dt;$$

Therefore,

$$\frac{Vol_n(B_2^n)}{Vol_{n-1}(B_2^{n-1})} = \int_{-1}^1 (1-t^2)^{\frac{n-1}{2}} dt$$

By Fubbini's theorem,

$$Vol_{n}(B_{2}^{n}) = \int_{-1}^{1} Vol_{n-1}(\sqrt{1-t^{2}}B_{2}^{n-1})dt = Vol_{n-1}(B_{2}^{n-1})\int_{-1}^{1}(1-t^{2})^{\frac{n-1}{2}}dt;$$

Therefore,

$$\frac{Vol_n(B_2^n)}{Vol_{n-1}(B_2^{n-1})} = \int_{-1}^1 (1-t^2)^{\frac{n-1}{2}} dt \approx \int_{-1}^1 e^{-\frac{nt^2}{2}} dt =$$

By Fubbini's theorem,

$$Vol_{n}(B_{2}^{n}) = \int_{-1}^{1} Vol_{n-1}(\sqrt{1-t^{2}}B_{2}^{n-1})dt = Vol_{n-1}(B_{2}^{n-1})\int_{-1}^{1}(1-t^{2})^{\frac{n-1}{2}}dt;$$

Therefore,

$$\frac{Vol_n(B_2^n)}{Vol_{n-1}(B_2^{n-1})} = \int_{-1}^1 (1-t^2)^{\frac{n-1}{2}} dt \approx \int_{-1}^1 e^{-\frac{nt^2}{2}} dt = \frac{C}{\sqrt{n}} \int e^{\frac{-s^2}{2}} ds =$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ξ.

By Fubbini's theorem,

$$Vol_{n}(B_{2}^{n}) = \int_{-1}^{1} Vol_{n-1}(\sqrt{1-t^{2}}B_{2}^{n-1})dt = Vol_{n-1}(B_{2}^{n-1})\int_{-1}^{1}(1-t^{2})^{\frac{n-1}{2}}dt;$$

Therefore,

$$\frac{Vol_n(B_2^n)}{Vol_{n-1}(B_2^{n-1})} = \int_{-1}^1 (1-t^2)^{\frac{n-1}{2}} dt \approx \int_{-1}^1 e^{-\frac{nt^2}{2}} dt = \frac{C}{\sqrt{n}} \int e^{-\frac{s^2}{2}} ds = \frac{C'}{\sqrt{n}}.$$

By Fubbini's theorem,

$$Vol_{n}(B_{2}^{n}) = \int_{-1}^{1} Vol_{n-1}(\sqrt{1-t^{2}}B_{2}^{n-1})dt = Vol_{n-1}(B_{2}^{n-1})\int_{-1}^{1}(1-t^{2})^{\frac{n-1}{2}}dt;$$

Therefore,

$$\frac{\operatorname{Vol}_n(B_2^n)}{\operatorname{Vol}_{n-1}(B_2^{n-1})} = \int_{-1}^1 (1-t^2)^{\frac{n-1}{2}} dt \approx \int_{-1}^1 e^{-\frac{nt^2}{2}} dt = \frac{C}{\sqrt{n}} \int e^{\frac{-s^2}{2}} ds = \frac{C'}{\sqrt{n}}.$$

۲

$$Vol_n(B_2^n) = \left(\frac{\sqrt{2\pi e}}{\sqrt{n}}\right)^n;$$

<ロ> (日) (日) (日) (日) (日)
Volume of the unit ball

By Fubbini's theorem,

$$Vol_{n}(B_{2}^{n}) = \int_{-1}^{1} Vol_{n-1}(\sqrt{1-t^{2}}B_{2}^{n-1})dt = Vol_{n-1}(B_{2}^{n-1})\int_{-1}^{1}(1-t^{2})^{\frac{n-1}{2}}dt;$$

Therefore,

$$\frac{Vol_n(B_2^n)}{Vol_{n-1}(B_2^{n-1})} = \int_{-1}^1 (1-t^2)^{\frac{n-1}{2}} dt \approx \int_{-1}^1 e^{-\frac{nt^2}{2}} dt = \frac{C}{\sqrt{n}} \int e^{\frac{-s^2}{2}} ds = \frac{C'}{\sqrt{n}}.$$

$$Vol_n(B_2^n) = \left(\frac{\sqrt{2\pi e}}{\sqrt{n}}\right)^n;$$

• The unit ball gets smaller and smaller!

≣ ▶

Volume of the unit ball

By Fubbini's theorem,

$$Vol_{n}(B_{2}^{n}) = \int_{-1}^{1} Vol_{n-1}(\sqrt{1-t^{2}}B_{2}^{n-1})dt = Vol_{n-1}(B_{2}^{n-1})\int_{-1}^{1}(1-t^{2})^{\frac{n-1}{2}}dt;$$

Therefore,

$$\frac{Vol_n(B_2^n)}{Vol_{n-1}(B_2^{n-1})} = \int_{-1}^1 (1-t^2)^{\frac{n-1}{2}} dt \approx \int_{-1}^1 e^{-\frac{nt^2}{2}} dt = \frac{C}{\sqrt{n}} \int e^{\frac{-s^2}{2}} ds = \frac{C'}{\sqrt{n}}.$$

۲

$$Vol_n(B_2^n) = \left(\frac{\sqrt{2\pi e}}{\sqrt{n}}\right)^n;$$

- The unit ball gets smaller and smaller!
- The radius of the ball of unit volume is of order $\sqrt{n!}$

Hyperplanes

For a unit vector ξ , define the hyperplane $H = \xi^{\perp}$, orthogonal to ξ , as

$$\xi^{\perp} = \{ x \in \mathbb{R}^n : \langle x, \xi \rangle = 0 \}.$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

æ

Hyperplanes and slabs

Hyperplanes

For a unit vector ξ , define the hyperplane $H = \xi^{\perp}$, orthogonal to ξ , as

$$\xi^{\perp} = \{ x \in \mathbb{R}^n : \langle x, \xi \rangle = 0 \}.$$

Slabs

For a unit vector ξ , define the slab S_{ξ} , orthogonal to ξ , of width ρ , as

$$S_{\xi} = \{x \in \mathbb{R}^n : |\langle x, \xi \rangle| \le \rho\}.$$

< ∃ →

Distribution of mass in the ball

• Note that
$$\frac{Vol_{n-1}(B_2^{n-1}\cap\xi^{\perp})}{Vol_n(B_2^n\cap\xi^{\perp})} = c\sqrt{n} - \text{large!}$$

E 990

・ロト ・四ト ・ヨト ・ヨト

• Note that
$$\frac{Vol_{n-1}(B_2^{n-1} \cap \xi^{\perp})}{Vol_n(B_2^n \cap \xi^{\perp})} = c\sqrt{n} - \text{large!}$$

• Let B be the ball of unit volume, i.e. $c\sqrt{n}B_2^n$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

• Note that
$$\frac{Vol_{n-1}(B_2^{n-1} \cap \xi^{\perp})}{Vol_n(B_2^n \cap \xi^{\perp})} = c\sqrt{n} - \text{large!}$$

- Let B be the ball of unit volume, i.e. $c\sqrt{n}B_2^n$.
- Note that $Vol_{n-1}(B\cap\xi^{\perp})\approx\sqrt{e}$

< ∃⇒

э

• Note that
$$\frac{Vol_{n-1}(B_2^{n-1} \cap \xi^{\perp})}{Vol_n(B_2^n \cap \xi^{\perp})} = c\sqrt{n} - \text{large!}$$

- Let B be the ball of unit volume, i.e. $c\sqrt{n}B_2^n$.
- Note that $Vol_{n-1}(B \cap \xi^{\perp}) \approx \sqrt{e}$

• Therefore, the constant portion of the volume of the ball is contained in a slab of constant width!

= 990

イロト イヨト イヨト イヨト

(本間) (本語) (本語) (二)

∃ 𝒫𝔅

Most of the mass of the ball is near the boundary!

Denote the boundary of the unit ball by S^{n-1} – unit sphere.

Most of the mass of the ball is near the boundary!

Denote the boundary of the unit ball by \mathbb{S}^{n-1} – unit sphere. Integrating in polar coordinates, we get

$$Vol_n(B_2^n) = \int_{\mathbb{S}^{n-1}} \int_0^1 t^{n-1} dt d\theta =$$

Most of the mass of the ball is near the boundary!

Denote the boundary of the unit ball by \mathbb{S}^{n-1} – unit sphere. Integrating in polar coordinates, we get

$$\operatorname{Vol}_n(B_2^n) = \int_{\mathbb{S}^{n-1}} \int_0^1 t^{n-1} dt d\theta = \frac{|\mathbb{S}^{n-1}|}{n}.$$

Most of the mass of the ball is near the boundary!

Denote the boundary of the unit ball by \mathbb{S}^{n-1} – unit sphere. Integrating in polar coordinates, we get

$$\operatorname{Vol}_n(B_2^n) = \int_{\mathbb{S}^{n-1}} \int_0^1 t^{n-1} dt d\theta = \frac{|\mathbb{S}^{n-1}|}{n}.$$

Note that

$$\int_0^1 t^{n-1} = \operatorname{const} \cdot \int_{1-\frac{1}{n}}^1 t^n dt.$$

Most of the mass of the ball is near the boundary!

Denote the boundary of the unit ball by \mathbb{S}^{n-1} – unit sphere. Integrating in polar coordinates, we get

$$\operatorname{Vol}_n(B_2^n) = \int_{\mathbb{S}^{n-1}} \int_0^1 t^{n-1} dt d\theta = \frac{|\mathbb{S}^{n-1}|}{n}.$$

Note that

$$\int_0^1 t^{n-1} = const \cdot \int_{1-\frac{1}{n}}^1 t^n dt.$$

Therefore, a constant portion of the volume of the unit ball is in the thin spherical shell near the boundary!

More on distribution of mass in the ball

(人間) くほう くほう

æ

Smallest section of the unit cube

Consider a unit (in volume) cube $[-\frac{1}{2},\frac{1}{2}]^n \subset \mathbb{R}^n$.

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ →

Smallest section of the unit cube

Consider a unit (in volume) cube $\left[-\frac{1}{2},\frac{1}{2}\right]^n \subset \mathbb{R}^n$. What is its smallest section?

Smallest section of the unit cube

Consider a unit (in volume) cube $\left[-\frac{1}{2},\frac{1}{2}\right]^n \subset \mathbb{R}^n$. What is its smallest section?

Turns out that the smallest (in area) section of the unit cube is the one parallel to coordinate subspaces:

What is its largest section of the cube $\left[-\frac{1}{2}, \frac{1}{2}\right]^n \subset \mathbb{R}^n$?

E 990

・ロト ・四ト・モン・モン・

What is its largest section of the cube $[-\frac{1}{2}, \frac{1}{2}]^n \subset \mathbb{R}^n$?

Theorem (Keith Ball, 1984)

For every dimension *n* and for every unit vector $u \in \mathbb{R}^n$,

$$Vol_{n-1}([-\frac{1}{2},\frac{1}{2}]^n \cap u^{\perp}) \leq \sqrt{2}.$$

글 🕨 🖌 글 🕨

What is its largest section of the cube $[-\frac{1}{2}, \frac{1}{2}]^n \subset \mathbb{R}^n$?

Theorem (Keith Ball, 1984)

For every dimension *n* and for every unit vector $u \in \mathbb{R}^n$,

$$Vol_{n-1}([-\frac{1}{2},\frac{1}{2}]^n \cap u^{\perp}) \leq \sqrt{2}.$$

This estimate is sharp!

• We have discovered that sections of the ball of unit volume are of area \sqrt{e} .

문▶ ★ 문▶

< 17 ▶

æ

- We have discovered that sections of the ball of unit volume are of area \sqrt{e} .
- The largest section of the cube of unit volume is of area $\sqrt{2}$.

< ∃⇒

э

- We have discovered that sections of the ball of unit volume are of area \sqrt{e} .
- The largest section of the cube of unit volume is of area $\sqrt{2}$.
- They are both constants that do not depend on the dimension!

< ∃⇒

- We have discovered that sections of the ball of unit volume are of area \sqrt{e} .
- The largest section of the cube of unit volume is of area $\sqrt{2}$.
- They are both constants that do not depend on the dimension!

Bourgain's slicing problem, 1982

Consider a convex body K in \mathbb{R}^n of volume one. How small can the area of its largest hyperplane section be? Can it be smaller than an absolute constant?

- We have discovered that sections of the ball of unit volume are of area \sqrt{e} .
- The largest section of the cube of unit volume is of area $\sqrt{2}$.
- They are both constants that do not depend on the dimension!

Bourgain's slicing problem, 1982

Consider a convex body K in \mathbb{R}^n of volume one. How small can the area of its largest hyperplane section be? Can it be smaller than an absolute constant?

Nobody knows the answer!

This question is wide open!

- We have discovered that sections of the ball of unit volume are of area \sqrt{e} .
- The largest section of the cube of unit volume is of area $\sqrt{2}$.
- They are both constants that do not depend on the dimension!

Bourgain's slicing problem, 1982

Consider a convex body K in \mathbb{R}^n of volume one. How small can the area of its largest hyperplane section be? Can it be smaller than an absolute constant?

Nobody knows the answer!

This question is wide open! The best known estimate is due to Klartag, and it says that the largest section of a convex body of unit volume cannot be smaller than $cn^{-\frac{1}{4}}$.

Central Limit Theorem

Let $X_1, ..., X_n$ be independent identically distributed random variables. Then $\frac{X_1+...+X_n}{\sqrt{n}}$ has almost normal (gaussian) distribution.

・ 同 ト ・ ヨ ト ・ ヨ ト

Central Limit Theorem

Let $X_1, ..., X_n$ be independent identically distributed random variables. Then $\frac{X_1+...+X_n}{\sqrt{n}}$ has almost normal (gaussian) distribution.

Example: uniform random variables on [0,1].

• Note that in the case when X_i are uniform on the unit interval,

$$\frac{X_1+\ldots+X_n}{\sqrt{n}}=\langle X,u\rangle,$$

where $u = (\frac{1}{\sqrt{n}}, ..., \frac{1}{\sqrt{n}})$ and X is a random vector uniformly distributed in the unit cube.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト …

3

Central Limit Theorem

Let $X_1, ..., X_n$ be independent identically distributed random variables. Then $\frac{X_1+...+X_n}{\sqrt{n}}$ has almost normal (gaussian) distribution.

Example: uniform random variables on [0,1].

• Note that in the case when X_i are uniform on the unit interval,

$$\frac{X_1+\ldots+X_n}{\sqrt{n}}=\langle X,u\rangle,$$

where $u = (\frac{1}{\sqrt{n}}, ..., \frac{1}{\sqrt{n}})$ and X is a random vector uniformly distributed in the unit cube.

• The density of $\langle X, u \rangle$ takes values which are hyperplane sections of the cube, orthogonal to u!

・ロン ・四 と ・ ヨン ・ ヨン

CLT and the cube

The Central Limit Theorem tells us that the sections of the cube have almost Gaussian distribution!

< ∃⇒

э

Sections of an arbitrary convex body in \mathbb{R}^n in most of directions have almost Gaussian distribution!

글 🕨 🖌 글 🕨

Sections of an arbitrary convex body in \mathbb{R}^n in most of directions have almost Gaussian distribution!

• Thus, all the convex bodies are a bit like cubes!

Sections of an arbitrary convex body in \mathbb{R}^n in most of directions have almost Gaussian distribution!

- Thus, all the convex bodies are a bit like cubes!
- Also, all the convex bodies are a bit like balls: for every convex body in Rⁿ there is a section (of small dimension) which looks very much like a ball! This is the content of Milman-Dvoretszki theorem.

Sections of an arbitrary convex body in \mathbb{R}^n in most of directions have almost Gaussian distribution!

- Thus, all the convex bodies are a bit like cubes!
- Also, all the convex bodies are a bit like balls: for every convex body in Rⁿ there is a section (of small dimension) which looks very much like a ball!
 This is the content of Milman-Dvoretszki theorem.
- But we said that balls and cubes are very far from each other... Oops!
Thanks for your attention!

Galyna V. Livshyts What is a convex body?

(日)

Ξ.