What is a convex body?

Galyna V. Livshyts
Mathematical Sciences Research Institute, Berkeley, CA

Field of dreams, Saint Louis, MO November, 2017.

n-dimensional Euclidean space

- Throughout the talk, n shall stand for a positive integer, usually large.

n-dimensional Euclidean space

- Throughout the talk, n shall stand for a positive integer, usually large.
- We shall study geometry of \mathbb{R}^{n}, an n-dimensional space.

n-dimensional Euclidean space

- Throughout the talk, n shall stand for a positive integer, usually large.
- We shall study geometry of \mathbb{R}^{n}, an n-dimensional space.
- The elements of \mathbb{R}^{n} are vectors with n coordinates: $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
- Throughout the talk, n shall stand for a positive integer, usually large.
- We shall study geometry of \mathbb{R}^{n}, an n-dimensional space.
- The elements of \mathbb{R}^{n} are vectors with n coordinates: $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
- Given vectors $x, y \in \mathbb{R}^{n}$, with $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, their sum is the vector $x+y=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$.
- Throughout the talk, n shall stand for a positive integer, usually large.
- We shall study geometry of \mathbb{R}^{n}, an n-dimensional space.
- The elements of \mathbb{R}^{n} are vectors with n coordinates: $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
- Given vectors $x, y \in \mathbb{R}^{n}$, with $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, their sum is the vector $x+y=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$.
- For $\lambda>0$, we have $\lambda x=\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)$.
- Throughout the talk, n shall stand for a positive integer, usually large.
- We shall study geometry of \mathbb{R}^{n}, an n-dimensional space.
- The elements of \mathbb{R}^{n} are vectors with n coordinates: $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
- Given vectors $x, y \in \mathbb{R}^{n}$, with $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, their sum is the vector $x+y=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$.
- For $\lambda>0$, we have $\lambda x=\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)$.
- Scalar product $\langle x, y\rangle=x_{1} y_{1}+\ldots+x_{n} y_{n}$.
- Throughout the talk, n shall stand for a positive integer, usually large.
- We shall study geometry of \mathbb{R}^{n}, an n-dimensional space.
- The elements of \mathbb{R}^{n} are vectors with n coordinates: $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
- Given vectors $x, y \in \mathbb{R}^{n}$, with $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, their sum is the vector $x+y=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right)$.
- For $\lambda>0$, we have $\lambda x=\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)$.
- Scalar product $\langle x, y\rangle=x_{1} y_{1}+\ldots+x_{n} y_{n}$.

Convex bodies

Convex set

A set K in \mathbb{R}^{n} is called convex if for any pair of points $x, y \in K$, the interval [x, y] is fully contained in K.

b

Convex bodies

Convex set

A set K in \mathbb{R}^{n} is called convex if for any pair of points $x, y \in K$, the interval [x, y] is fully contained in K.

- Equivalently, set K is convex if for every $x, y \in K$ and for every $\lambda \in[0,1]$, the vector $\lambda x+(1-\lambda) y \in K$.

Convex bodies

Convex set

A set K in \mathbb{R}^{n} is called convex if for any pair of points $x, y \in K$, the interval [x, y] is fully contained in K.

- Equivalently, set K is convex if for every $x, y \in K$ and for every $\lambda \in[0,1]$, the vector $\lambda x+(1-\lambda) y \in K$.
- A convex body in \mathbb{R}^{n} is a compact convex set with non-empty interior.

Convex bodies

Convex set

A set K in \mathbb{R}^{n} is called convex if for any pair of points $x, y \in K$, the interval [x, y] is fully contained in K.

- Equivalently, set K is convex if for every $x, y \in K$ and for every $\lambda \in[0,1]$, the vector $\lambda x+(1-\lambda) y \in K$.
- A convex body in \mathbb{R}^{n} is a compact convex set with non-empty interior.
- A body K is called symmetric if $x \in K \Longrightarrow-x \in K$.

Convex bodies

- Convex hull of N points x_{1}, \ldots, x_{N}

$$
\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)=\left\{y \in \mathbb{R}^{n}: y=\lambda_{1} x_{1}+\ldots+\lambda_{N} x_{N}, \lambda_{i} \geq 0, \sum \lambda_{i}=1\right\}
$$

is a convex body:

Convex bodies

- Convex hull of N points x_{1}, \ldots, x_{N}

$$
\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)=\left\{y \in \mathbb{R}^{n}: y=\lambda_{1} x_{1}+\ldots+\lambda_{N} x_{N}, \lambda_{i} \geq 0, \sum \lambda_{i}=1\right\}
$$

is a convex body:

- An intersection of N half-spaces is a convex body:

- Convex hull of N points x_{1}, \ldots, x_{N}

$$
\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)=\left\{y \in \mathbb{R}^{n}: y=\lambda_{1} x_{1}+\ldots+\lambda_{N} x_{N}, \lambda_{i} \geq 0, \sum \lambda_{i}=1\right\}
$$

is a convex body:

- An intersection of N half-spaces is a convex body:

- Moreover, every convex body is an intersection of (very many) half-spaces, as well as the convex hull of its boundary points.

CUBE

The unit cube in \mathbb{R}^{n} is the set of points

$$
B_{\infty}^{n}=[-1,1]^{n}=\left\{x \in \mathbb{R}^{n}:\left|x_{i}\right| \leq 1, i=1, \ldots, n\right\} .
$$

CUBE

The unit cube in \mathbb{R}^{n} is the set of points

$$
B_{\infty}^{n}=[-1,1]^{n}=\left\{x \in \mathbb{R}^{n}:\left|x_{i}\right| \leq 1, i=1, \ldots, n\right\} .
$$

SIMPLEX

Convex hull of $n+1$ points in \mathbb{R}^{n} is called simplex:

SIMPLEX

Convex hull of $n+1$ points in \mathbb{R}^{n} is called simplex:

DIAMOND

The diamond, or cross-polytope is the set defined as

$$
B_{1}^{n}=\left\{x \in \mathbb{R}^{n}:\left|x_{1}\right|+\ldots+\left|x_{n}\right| \leq 1\right\} .
$$

In other words, B_{1}^{n} is the convex hull of points
$(0,0, \ldots, 1,0, \ldots, 0),(0,0, \ldots,-1,0, \ldots, 0), \ldots$

DIAMOND

The diamond, or cross-polytope is the set defined as

$$
B_{1}^{n}=\left\{x \in \mathbb{R}^{n}:\left|x_{1}\right|+\ldots+\left|x_{n}\right| \leq 1\right\} .
$$

In other words, B_{1}^{n} is the convex hull of points $(0,0, \ldots, 1,0, \ldots, 0),(0,0, \ldots,-1,0, \ldots, 0), \ldots$

BALL

The unit ball in \mathbb{R}^{n} is the set

$$
B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:\left|x_{1}\right|^{2}+\ldots+\left|x_{n}\right|^{2} \leq 1\right\}
$$

Examples of convex bodies

BALL

The unit ball in \mathbb{R}^{n} is the set

$$
B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:\left|x_{1}\right|^{2}+\ldots+\left|x_{n}\right|^{2} \leq 1\right\} .
$$

L_{p}-BALL

More generally, for $p \geq 1, L_{p}$-ball in \mathbb{R}^{n} is the set

$$
B_{p}^{n}=\left\{x \in \mathbb{R}^{n}:\left|x_{1}\right|^{p}+\ldots+\left|x_{n}\right|^{p} \leq 1\right\} .
$$

L_{p}-BALL

More generally, for $p \geq 1, L_{p}$-ball in \mathbb{R}^{n} is the set

$$
B_{p}^{n}=\left\{x \in \mathbb{R}^{n}:\left|x_{1}\right|^{p}+\ldots+\left|x_{n}\right|^{p} \leq 1\right\} .
$$

- $p=2$ - usual "euclidean" ball;
- $p=1$ - cross-polytope;
- $p=\infty$ - cube!

Ball, cube and diamond are very far!

Note that

- $\frac{1}{\sqrt{n}}$ Ball \subset Diamond

Ball, cube and diamond are very far!

Note that

- $\frac{1}{\sqrt{n}}$ Ball \subset Diamond \subset Ball

Ball, cube and diamond are very far!

Note that

- $\frac{1}{\sqrt{n}}$ Ball \subset Diamond \subset Ball \subset Cube

Ball, cube and diamond are very far!

Note that

- $\frac{1}{\sqrt{n}}$ Ball \subset Diamond \subset Ball \subset Cube $\subset \sqrt{n} \cdot$ Ball

Volumes of convex bodies

Volume of the unit ball

By Fubbini's theorem,

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\int_{-1}^{1} \operatorname{VoI}_{n-1}\left(\sqrt{1-t^{2}} B_{2}^{n-1}\right) d t=
$$

Volumes of convex bodies

Volume of the unit ball

By Fubbini's theorem,

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\int_{-1}^{1} \operatorname{VoI}_{n-1}\left(\sqrt{1-t^{2}} B_{2}^{n-1}\right) d t=\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right) \int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t
$$

Volumes of convex bodies

Volume of the unit ball

By Fubbini's theorem,

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\int_{-1}^{1} \operatorname{VoI}_{n-1}\left(\sqrt{1-t^{2}} B_{2}^{n-1}\right) d t=\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right) \int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t
$$

Therefore,

$$
\frac{\operatorname{VoI}_{n}\left(B_{2}^{n}\right)}{\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right)}=\int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t
$$

Volumes of convex bodies

Volume of the unit ball

By Fubbini's theorem,

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\int_{-1}^{1} \operatorname{VoI}_{n-1}\left(\sqrt{1-t^{2}} B_{2}^{n-1}\right) d t=\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right) \int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t
$$

Therefore,

$$
\frac{\operatorname{Vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right)}=\int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t \approx \int_{-1}^{1} e^{-\frac{n t^{2}}{2}} d t=
$$

Volumes of convex bodies

Volume of the unit ball

By Fubbini's theorem,

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\int_{-1}^{1} \operatorname{Vol}_{n-1}\left(\sqrt{1-t^{2}} B_{2}^{n-1}\right) d t=\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right) \int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t
$$

Therefore,

$$
\frac{\operatorname{Vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right)}=\int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t \approx \int_{-1}^{1} e^{-\frac{n t^{2}}{2}} d t=\frac{C}{\sqrt{n}} \int e^{\frac{-s^{2}}{2}} d s=
$$

Volumes of convex bodies

Volume of the unit ball

By Fubbini's theorem,

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\int_{-1}^{1} \operatorname{Vol}_{n-1}\left(\sqrt{1-t^{2}} B_{2}^{n-1}\right) d t=\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right) \int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t
$$

Therefore,

$$
\frac{\operatorname{Vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right)}=\int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t \approx \int_{-1}^{1} e^{-\frac{n t^{2}}{2}} d t=\frac{C}{\sqrt{n}} \int e^{\frac{-s^{2}}{2}} d s=\frac{C^{\prime}}{\sqrt{n}}
$$

Volumes of convex bodies

Volume of the unit ball

By Fubbini's theorem,

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\int_{-1}^{1} \operatorname{Vol}_{n-1}\left(\sqrt{1-t^{2}} B_{2}^{n-1}\right) d t=\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right) \int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t
$$

Therefore,

$$
\frac{\operatorname{Vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right)}=\int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t \approx \int_{-1}^{1} e^{-\frac{n t^{2}}{2}} d t=\frac{C}{\sqrt{n}} \int e^{\frac{-s^{2}}{2}} d s=\frac{C^{\prime}}{\sqrt{n}}
$$

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\left(\frac{\sqrt{2 \pi e}}{\sqrt{n}}\right)^{n}
$$

Volumes of convex bodies

Volume of the unit ball

By Fubbini's theorem,

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\int_{-1}^{1} \operatorname{Vol}_{n-1}\left(\sqrt{1-t^{2}} B_{2}^{n-1}\right) d t=\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right) \int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t
$$

Therefore,

$$
\frac{\operatorname{Vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right)}=\int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t \approx \int_{-1}^{1} e^{-\frac{n t^{2}}{2}} d t=\frac{C}{\sqrt{n}} \int e^{\frac{-s^{2}}{2}} d s=\frac{C^{\prime}}{\sqrt{n}}
$$

-

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\left(\frac{\sqrt{2 \pi e}}{\sqrt{n}}\right)^{n}
$$

- The unit ball gets smaller and smaller!

Volume of the unit ball

By Fubbini's theorem,

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\int_{-1}^{1} \operatorname{VoI}_{n-1}\left(\sqrt{1-t^{2}} B_{2}^{n-1}\right) d t=\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right) \int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t
$$

Therefore,

$$
\frac{\operatorname{Vol}_{n}\left(B_{2}^{n}\right)}{\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right)}=\int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-1}{2}} d t \approx \int_{-1}^{1} e^{-\frac{n t^{2}}{2}} d t=\frac{C}{\sqrt{n}} \int e^{\frac{-s^{2}}{2}} d s=\frac{C^{\prime}}{\sqrt{n}}
$$

-

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\left(\frac{\sqrt{2 \pi e}}{\sqrt{n}}\right)^{n}
$$

- The unit ball gets smaller and smaller!
- The radius of the ball of unit volume is of order \sqrt{n} !

Hyperplanes

For a unit vector ξ, define the hyperplane $H=\xi^{\perp}$, orthogonal to ξ, as

$$
\xi^{\perp}=\left\{x \in \mathbb{R}^{n}:\langle x, \xi\rangle=0\right\}
$$

Hyperplanes

For a unit vector ξ, define the hyperplane $H=\xi^{\perp}$, orthogonal to ξ, as

$$
\xi^{\perp}=\left\{x \in \mathbb{R}^{n}:\langle x, \xi\rangle=0\right\}
$$

Slabs

For a unit vector ξ, define the slab S_{ξ}, orthogonal to ξ, of width ρ, as

$$
S_{\xi}=\left\{x \in \mathbb{R}^{n}:|\langle x, \xi\rangle| \leq \rho\right\}
$$

- Note that $\frac{\operatorname{Vol}_{n-1}\left(B_{2}^{n-1} \cap \xi^{\perp}\right)}{\operatorname{Vol}_{n}\left(B_{2}^{n} \cap \xi^{\perp}\right)}=c \sqrt{n}$ - large!

- Note that $\frac{\operatorname{Vol}_{n-1}\left(B_{2}^{n-1} \cap \xi^{\perp}\right)}{\operatorname{Vol}_{n}\left(B_{2}^{n} \cap \xi^{\perp}\right)}=c \sqrt{n}$ - large!

- Let B be the ball of unit volume, i.e. $c \sqrt{n} B_{2}^{n}$.
- Note that $\frac{\operatorname{Vol}_{n-1}\left(B_{2}^{n-1} \cap \xi^{\perp}\right)}{\operatorname{Vol}_{n}\left(B_{2}^{n} \cap \xi^{\perp}\right)}=c \sqrt{n}$ - large!

- Let B be the ball of unit volume, i.e. $c \sqrt{n} B_{2}^{n}$.
- Note that $\operatorname{Vol}_{n-1}\left(B \cap \xi^{\perp}\right) \approx \sqrt{e}$
- Note that $\frac{\operatorname{Vol}_{n-1}\left(B_{2}^{n-1} \cap \xi^{\perp}\right)}{\operatorname{Vol}_{n}\left(B_{2}^{n} \cap \xi^{\perp}\right)}=c \sqrt{n}$ - large!

- Let B be the ball of unit volume, i.e. $c \sqrt{n} B_{2}^{n}$.
- Note that $\operatorname{Vol}_{n-1}\left(B \cap \xi^{\perp}\right) \approx \sqrt{e}$
- Therefore, the constant portion of the volume of the ball is contained in a slab of constant width!

We know that most of the mass of the ball comes from thin slabs. Does it mean that the volume is concentrated in the center?..

We know that most of the mass of the ball comes from thin slabs. Does it mean that the volume is concentrated in the center?..
No!

We know that most of the mass of the ball comes from thin slabs. Does it mean that the volume is concentrated in the center?..
No!
Most of the mass of the ball is near the boundary!
Denote the boundary of the unit ball by \mathbb{S}^{n-1} - unit sphere.

We know that most of the mass of the ball comes from thin slabs. Does it mean that the volume is concentrated in the center?..
No!

Most of the mass of the ball is near the boundary!

Denote the boundary of the unit ball by \mathbb{S}^{n-1} - unit sphere. Integrating in polar coordinates, we get

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\int_{\mathbb{S}^{n-1}} \int_{0}^{1} t^{n-1} d t d \theta=
$$

We know that most of the mass of the ball comes from thin slabs. Does it mean that the volume is concentrated in the center?..
No!

Most of the mass of the ball is near the boundary!

Denote the boundary of the unit ball by \mathbb{S}^{n-1} - unit sphere. Integrating in polar coordinates, we get

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\int_{\mathbb{S}^{n-1}} \int_{0}^{1} t^{n-1} d t d \theta=\frac{\left|\mathbb{S}^{n-1}\right|}{n} .
$$

We know that most of the mass of the ball comes from thin slabs. Does it mean that the volume is concentrated in the center?..
No!

Most of the mass of the ball is near the boundary!

Denote the boundary of the unit ball by \mathbb{S}^{n-1} - unit sphere. Integrating in polar coordinates, we get

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\int_{\mathbb{S}^{n-1}} \int_{0}^{1} t^{n-1} d t d \theta=\frac{\left|\mathbb{S}^{n-1}\right|}{n}
$$

Note that

$$
\int_{0}^{1} t^{n-1}=\text { const } \cdot \int_{1-\frac{1}{n}}^{1} t^{n} d t
$$

We know that most of the mass of the ball comes from thin slabs. Does it mean that the volume is concentrated in the center?..
No!

Most of the mass of the ball is near the boundary!

Denote the boundary of the unit ball by \mathbb{S}^{n-1} - unit sphere. Integrating in polar coordinates, we get

$$
\operatorname{Vol}_{n}\left(B_{2}^{n}\right)=\int_{\mathbb{S}^{n-1}} \int_{0}^{1} t^{n-1} d t d \theta=\frac{\left|\mathbb{S}^{n-1}\right|}{n}
$$

Note that

$$
\int_{0}^{1} t^{n-1}=\text { const } \cdot \int_{1-\frac{1}{n}}^{1} t^{n} d t
$$

Therefore, a constant portion of the volume of the unit ball is in the thin spherical shell near the boundary!

Consider a unit (in volume) cube $\left[-\frac{1}{2}, \frac{1}{2}\right]^{n} \subset \mathbb{R}^{n}$.

Consider a unit (in volume) cube $\left[-\frac{1}{2}, \frac{1}{2}\right]^{n} \subset \mathbb{R}^{n}$. What is its smallest section?

Consider a unit (in volume) cube $\left[-\frac{1}{2}, \frac{1}{2}\right]^{n} \subset \mathbb{R}^{n}$. What is its smallest section?

Turns out that the smallest (in area) section of the unit cube is the one parallel to coordinate subspaces:

Largest section of the unit cube

What is its largest section of the cube $\left[-\frac{1}{2}, \frac{1}{2}\right]^{n} \subset \mathbb{R}^{n}$?

What is its largest section of the cube $\left[-\frac{1}{2}, \frac{1}{2}\right]^{n} \subset \mathbb{R}^{n}$?

Theorem (Keith Ball, 1984)

For every dimension n and for every unit vector $u \in \mathbb{R}^{n}$,

$$
\operatorname{Vol}_{n-1}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]^{n} \cap u^{\perp}\right) \leq \sqrt{2} .
$$

Largest section of the unit cube

What is its largest section of the cube $\left[-\frac{1}{2}, \frac{1}{2}\right]^{n} \subset \mathbb{R}^{n}$?

Theorem (Keith Ball, 1984)

For every dimension n and for every unit vector $u \in \mathbb{R}^{n}$,

$$
\operatorname{VoI}_{n-1}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]^{n} \cap u^{\perp}\right) \leq \sqrt{2}
$$

This estimate is sharp!

Slicing problem

- We have discovered that sections of the ball of unit volume are of area \sqrt{e}.
- We have discovered that sections of the ball of unit volume are of area \sqrt{e}.
- The largest section of the cube of unit volume is of area $\sqrt{2}$.
- We have discovered that sections of the ball of unit volume are of area \sqrt{e}.
- The largest section of the cube of unit volume is of area $\sqrt{2}$.
- They are both constants that do not depend on the dimension!
- We have discovered that sections of the ball of unit volume are of area \sqrt{e}.
- The largest section of the cube of unit volume is of area $\sqrt{2}$.
- They are both constants that do not depend on the dimension!

Bourgain's slicing problem, 1982

Consider a convex body K in \mathbb{R}^{n} of volume one. How small can the area of its largest hyperplane section be? Can it be smaller than an absolute constant?

Slicing problem

- We have discovered that sections of the ball of unit volume are of area \sqrt{e}.
- The largest section of the cube of unit volume is of area $\sqrt{2}$.
- They are both constants that do not depend on the dimension!

Bourgain's slicing problem, 1982

Consider a convex body K in \mathbb{R}^{n} of volume one. How small can the area of its largest hyperplane section be? Can it be smaller than an absolute constant?

Nobody knows the answer!
This question is wide open!

Slicing problem

- We have discovered that sections of the ball of unit volume are of area \sqrt{e}.
- The largest section of the cube of unit volume is of area $\sqrt{2}$.
- They are both constants that do not depend on the dimension!

Bourgain's slicing problem, 1982

Consider a convex body K in \mathbb{R}^{n} of volume one. How small can the area of its largest hyperplane section be? Can it be smaller than an absolute constant?

Nobody knows the answer!

This question is wide open! The best known estimate is due to Klartag, and it says that the largest section of a convex body of unit volume cannot be smaller than $c n^{-\frac{1}{4}}$.

Central Limit Theorem

Let X_{1}, \ldots, X_{n} be independent identically distributed random variables. Then $\frac{X_{1}+\ldots+X_{n}}{\sqrt{n}}$ has almost normal (gaussian) distribution.

Central Limit Theorem

Let X_{1}, \ldots, X_{n} be independent identically distributed random variables. Then $\frac{X_{1}+\ldots+X_{n}}{\sqrt{n}}$ has almost normal (gaussian) distribution.

Example: uniform random variables on $[0,1]$.

- Note that in the case when X_{i} are uniform on the unit interval,

$$
\frac{X_{1}+\ldots+X_{n}}{\sqrt{n}}=\langle X, u\rangle
$$

where $u=\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)$ and X is a random vector uniformly distributed in the unit cube.

Central Limit Theorem

Let X_{1}, \ldots, X_{n} be independent identically distributed random variables. Then $\frac{X_{1}+\ldots+X_{n}}{\sqrt{n}}$ has almost normal (gaussian) distribution.

Example: uniform random variables on [0,1].

- Note that in the case when X_{i} are uniform on the unit interval,

$$
\frac{X_{1}+\ldots+X_{n}}{\sqrt{n}}=\langle X, u\rangle
$$

where $u=\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)$ and X is a random vector uniformly distributed in the unit cube.

- The density of $\langle X, u\rangle$ takes values which are hyperplane sections of the cube, orthogonal to u !

CLT and the cube

The Central Limit Theorem tells us that the sections of the cube have almost Gaussian distribution!

Central Limit Theorem for convex sets (Klartag 2006)
Sections of an arbitrary convex body in \mathbb{R}^{n} in most of directions have almost Gaussian distribution!

Central Limit Theorem for convex sets (Klartag 2006)
Sections of an arbitrary convex body in \mathbb{R}^{n} in most of directions have almost Gaussian distribution!

- Thus, all the convex bodies are a bit like cubes!

Central Limit Theorem for convex sets (Klartag 2006)

Sections of an arbitrary convex body in \mathbb{R}^{n} in most of directions have almost Gaussian distribution!

- Thus, all the convex bodies are a bit like cubes!
- Also, all the convex bodies are a bit like balls: for every convex body in \mathbb{R}^{n} there is a section (of small dimension) which looks very much like a ball! This is the content of Milman-Dvoretszki theorem.

Central Limit Theorem for convex sets (Klartag 2006)

Sections of an arbitrary convex body in \mathbb{R}^{n} in most of directions have almost Gaussian distribution!

- Thus, all the convex bodies are a bit like cubes!
- Also, all the convex bodies are a bit like balls: for every convex body in \mathbb{R}^{n} there is a section (of small dimension) which looks very much like a ball! This is the content of Milman-Dvoretszki theorem.
- But we said that balls and cubes are very far from each other... Oops!

Thanks for your attention!

