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Probability
1 What is the probability of “heads” on a toss of

a fair coin?
2 What is the probability of “six” upermost on a

roll of a fair die?
3 What is the probability that the 100th digit

after the decimal point, of the decimal
expression of π equals 3?

4 What is the probability that Rome, Italy, is
North of Washington DC USA?

5 What is the probability that the sun rises
tomorrow? (Laplace)

My answers: (1) 1
2 (2) 1

6 (3) 1
10 (4) 0.99

Laplace’s answer to (5) 0.9999995



Interpretations of Probability

There are several interpretations of probability.
The interpretation leads to methods for
inferences under uncertainty. Here are the 2
most common interpretations:

1 as a long run frequency (often the only
interpretation in an introductory statistics course)

2 as a subjective degree of belief

You cannot put a long run frequency on an
event that cannot be repeated.

1 The 100th digit of π is or is not 3. The 100th digit
is constant no matter how often you calculate it.

2 Similarly, Rome is North or South of Washington
DC.



The Mathematical Concept of Probability
First the Sample Space

Probability theory is derived from a set of rules
and definitions.
Define a sample space S , and A a set of
subsets of S (events) with specific properties.

1 S ∈ A.
2 If A ∈ A then Ac ∈ A.
3 If A1,A2 . . . is an infinite sequence of sets in A

then ∪∞i=1Ai ∈ A.

A set of subsets of S with these properties is
called a σ-algebra.



What is Probability?
Probability is a Function

Now define a non-negative function, P , on each
event in A, also satisfying specific properties.

1 For any A ∈ A, P(A) ≥ 0 and P(S) = 1.
2 If A and B are in A and AB = ∅ then

P(A ∪ B) = P(A) + P(B).
3 If A1,A2,A3, . . . is an infinite sequence of events

such that AiAj = ∅ for all i 6= j then
P(∪∞i=1Ai) = Σ∞i=1P(Ai).

There is nothing controversial about the
mathematical concept of probability.



Subjective Probability
Should “degrees of belief” follow rules?
Should an individual represent their beliefs by a
probability distribution? (A probability
distribution follows the rules of probability).
Building on others (Bayes, 1763; Laplace,
1814; Ramsey, 1926) Savage, 1954, gave a set
of assumptions for rational behavior that beliefs
should obey. They lead to a probability
distribution as a consequence.
Several alternative frameworks also led to
probability as a consequence, most of them
involve either gambling or a concept of what it
means to be “rational”.



Assumptions of DeGroot, 1971

A ≺ B pronounced “A is less likely than B”, A ∼ B
as “A is equally likely as B”, and A � B as “B is
less likely than A”



SP1: For any two events A and B , exactly one of the
following three relations must hold: A ≺ B , A ∼ B or
A � B .

SP2: If A1, A2, B1, and B2 are four events such that
A1A2 = B1B2 = ∅ and Ai � Bi for i = 1, 2, then
A1 ∪ A2 � B1 ∪ B2. If, in addition, either A1 ≺ B1 or
A2 ≺ B2, then A1 ∪ A2 ≺ B1 ∪ B2.

SP3: If A is any event then ∅ � A. Furthermore ∅ ≺ S .

SP4: If A1 ⊃ A2 ⊃ . . . is a decreasing sequence of events
and B is some fixed event such that Ai � B for
i = 1, 2, . . ., then ∩∞i=1Ai � B .

SP5: There exists a random variable which has a uniform
distribution on the interval [0, 1].



DeGroot proves that under the 5 assumptions
about subjective beliefs, SP1 to SP5, for every
event A ∈ S there is a unique probability
distribution P that agrees with the subjective
beliefs. He first constructs it and then he
verifies that it is unique.



1 SP1: For any two events A and B , exactly one of the
following three relations must hold: A ≺ B , A ∼ B or
A � B .

2 SP2: If A1, A2, B1, and B2 are four events such that
A1A2 = B1B2 = φ and Ai � Bi for i = 1, 2, then
A1 ∪ A2 � B1 ∪ B2. If, in addition, either A1 ≺ B1 or
A2 ≺ B2, then A1 ∪ A2 ≺ B1 ∪ B2.

Lemma 1: Suppose that A, B , and D are events such
that AD = BD = ∅. Then A ≺ B if and only if
A ∪ D ≺ B ∪ D.

Proof: Suppose A ≺ B then SP2 gives us that
A ∪ D ≺ B ∪ D. Now suppose that A � B . Then, again
by SP2, A ∪ D � B ∪ D.



Conditional Probability

For any three events A, B and D, we need to extend the
relation � to (A|D) � (B |D) to mean that: the event B is at
least as likely to occur as event A given that event D has
occured.

Assumption CP: For any three events A, B and D,
(A|D) � (B |D) if and only if A ∩ D � B ∩ D.

Theorem: If the relation � satisfies SP1 to SP5, and
CP , then the function P defined earlier is the unique
probability distribuition which has the following property:
for any three events A, B and D such that P(D) > 0,
(A|D) � (B |D) if, and only if, P(A|D) ≤ P(B |D).



Bayes Theorem

Conditional probability of an event A given
event B , where P(B) 6= 0 is defined as

P(A|B) =
P(A and B)

P(B)
=

P(B |A)P(A)

P(B |A)P(A) + P(B |AC )P(AC )
.

More generally, if Ai , i = 1, . . . , k is a partition
of S , that is AiAj = ∅, and Σi=k

i=1P(Ai) = 1.
Then

P(Aj |B) =
P(B |Aj)P(Aj)

Σi=k
i=1P(B |Ai)P(Ai)

.



Bayesian Statistics

Using Bayesian statistics we can put a
probability distribution on quantities that are
fixed, but unknown.

Specify a joint distribution for the data y and
the unknown parameters θ: p(y , θ).
Alternatively, specify a likelihood p(y |θ) and a
prior distribution p(θ).

After observing data y = y0 update the prior
distribution using Bayes theorem to
p(θ|y = y0).



Outline

Probability: Fermat (1601) & Pascal (1623), Jacob
Bernoulli (1654), De Moivre (1718).

Bayes: Subjective probability for inference about an
unknown θ conditional on the data.

Laplace: Proved Bayes’ Theorem independently, and
used it for inference.

Savage

Blackwell

Bayes, Savage and Blackwell all came from “non-traditional”

backgrounds and faced challenges related to religion, or

disability, or race.



 

Isaac Newton, 1642–1727. 
Jacob Bernoulli, 1654– 1705. 
Abraham de Moivre, 1667 – 1754. 
Thomas Bayes, 1701 –1761. 
Jacob Emanuel Euler, 1707 – 1756. 
Pierre-Simon Laplace, 1749 – 1847. 
J Carl Friedrich Gauss, 1777 – 1855 
  

Thomas Bayes 

He was born in 1701 or 1702 in 
Hertfordshire.   His family then moved to 
a working class area of London where 
his father was a Presbyterian minister 

He attended the University of Edinburgh 
1719 until at least 1721.  

He moved to Tunbridge Wells in ~1930 
to take up a ministry. 

Published a theological (1731) and 
mathematical (1736) treatise: his 
mathematical publication defends 
Newton’s calculus against Berkley’s 
philosophy.  He died in 1761 and his 
statistical papers were published in 
1763. 



Bayes Example



Bayes Example



Bayes’ Example:

Roll W once so that it is equally likely to land anywhere
on the length of the table. Let θ represent where ball W
lands as a fraction of the length of the table 0 ≤ θ ≤ 1.
Then θ is uniformly distributed on the interval [0, 1].

Let X be the number of times that in n independent
rolls of the ball O, it lands to the left of the ball W .

Note that X ∈ {0, 1, 2, . . . , n − 1, n} and there are n + 1
possible values for Y .



The marginal distribution of X is

Pr(X = x)

=

∫ 1

0

(
n

x

)
θx(1− θ)n−xdθ for x ∈ {0, 1, . . . , n}

=
1

n + 1
.



Bayes’ Example Continued

Bayes used Bayes Theorem to make inference.

If we observe X = x then inferences are through
p(θ|X = x) the posterior distribution.

p(θ|X = x)

=
p(X = x |θ)p(θ)

Pr(X = x)

=

(
n
x

)
θx(1− θ)n−x

(n + 1)−1
for 0 ≤ θ ≤ 1

=
(n + 1)!

(n − x)!x!
θx(1− θ)n−x for 0 ≤ θ ≤ 1

and 0 elsewhere



p(θ|X = x)

=
(n + 1)!

(n − x)!x!
θx(1− θ)n−x for 0 ≤ θ ≤ 1, and 0 elsewhere

=
Γ(n)

Γ(n − x + 1)Γ(x + 1)
θx+1−1(1− θ)n−x+1−1 for 0 ≤ θ ≤ 1

=
1

B(x + 1, n − x + 1)
θx+1−1(1− θ)n−x+1−1 0 ≤ θ ≤ 1

Today we would recognize this as a

Beta(x+1,n-x+1)distribution. The mean, the expectation of θ

given X = x , is x+1
n+2

which Bayes also derived.



The cumulative distribution function of θ given X = x is

Pr(θ ≤ ω)

=
1

B(x + 1, n − x + 1)

∫ θ=ω

θ=0

θx+1−1(1− θ)n−x+1−1dθ

=
B(ω; x + 1, n − x + 1)

B(x + 1, n − x + 1)

where B(ω; x + 1, n − x + 1) is the incomplete Beta
function and B(x + 1, n − x + 1) is the usual Beta
function.

Beta functions and incomplete Beta functions can now
be calculated numerically.



Thomas Bayes’ Results
Stigler, 1989

Bayes noted that evaluation of∫ f

0 θ
x(1− θ)n−xdθ would complete the

solution. The first extensive tables of this
Incomplete Beta function were not compiled
until the 20th century.
Bayes sought to bound the Incomplete Beta
function above and below, but his bounds were
not very close.
It is thought (Stigler, 1989) that Bayes was
reluctant to publish his work without better
bounds. It was read to the Royal Society after
his death by Richard Price.



Pierre-Simone Laplace

 

 

Pierre–Simon Laplace, 1749--
1827. 

He is thought to be the son of a 
small cottager or a cider 
merchant.  He attended a 
Benedictine priory school.  At 16 
he went to the University of 
Caen, and then to the Ecole 
Militaire. 

He made important contributions 
to Mathematics, physics, 
astronomy and statistics, 
especially to Bayesian statistics. 



Laplace also approached the problem of
Binomial sampling for making inferences about
a proportion θ. He used De Moivre’s urn
models rather than rolling balls on a table.
He derived Bayes’ theorem without being aware
of Bayes’ work.
He used Stirling’s formula to derive a large
sample normal approximation to the Beta
posterior.
In 1785 he published a long memoir that was
later used to derive approximations to
incomplete Beta functions.
Laplace’s 1774 analysis was directed towards
showing what is now called posterior
consistency.
In 1777 he derived a distribution (the Laplace
distribution) and used it to calculate posterior
densities of astromomical quantities measured
repeatedly with error.



Bayes found the mean of x+1
n+2 when we observe

x successes out of n trials.

Laplace derived the same expression of x+1
n+2 .

Laplace used as an illustration the calculation
of the probability of the event that the sun will
rise tomorrow.

Suppose the sun has risen every day for 5000
years. Laplace substituted
n = 5000× 365 = 1, 825, 000 and
x = 5000× 365 = 1, 825, 000 and so

Pr(The sun will rise tomorrow) =
1825001

1825002
= 0.9999995



Frank Ramsey

 

Frank Ramsey (1903 to 1930) 

Born in Cambridge where his father was 
a mathematician.   
 
He studied mathematics at Cambridge 
where he became a student of John 
Maynard Keynes.  Despite his atheism he 
was appointed as a fellow at Cambridge 
in 1924 (non-Christians were allowed to 
become faculty in 1913). 
 
Ramsey advised Wittgenstein on his PhD 
thesis.   
 
Keynes argued against subjective 
probability, but Ramsey disagreed.  His 
work was ignored until 1944.  



Ramsey developed a theory of rational behavior
using betting. He developed a framework for
rational behavior by avoiding bad bets. He
developed the basis of Bayesian decision theory.

His mentor was Keynes.

He died when he was 26.

It has been speculated that had Ramsey not
died at 26, subjective probabilities and Bayesian
statistics would have become standard. As it is,
the frequentist interpretation became the norm.



Leonard Jimmie Savage

 

  

Leonard “Jimmie” Savage (Born Leonard Ogashevitz 1917 
in Detroit, died aged 53 in 1971).  His grandfather was an 
immigrant and his father a realtor. He had poor eyesight 
and he was initially educated at home, then at Central 
High School in Detroit.  “He was a brilliant child, but he 
paid no attention to what was going on in school 
because he couldn't see what was going on in school. The 
teachers thought he was more or less feebleminded.”   
His teachers refused to recommend him to the University 
of Michigan. 

His father persuaded a friend to recommend him to 
Wayne University where he studied Engineering.  He did 
well enough to be admitted later to UM to study 
Chemical Engineering.  He was expelled from UM.  He 
was allowed back to take math courses.  His grades 
improved to C in analytic geometry; B in calculus; B in 
differential equations.  Inspired by a faculty member, 
Raymond Wilder, he received all A’s from then on. 



Jimmie Savage

Went on to a PhD in Math (1941) at UM, Institute for
Advanced Study (1941-2). He joined the war effort and
worked with von Neumann and with Courant. In 1946 he
began at the University of Chigago, followed by a
Guggenheim, and a Fulbright award.

His 1954 book, the Foundations of Statistics built on
Ramsey’s and von Neumann’s work. He developed the
theory of utility and optimal decision makeing. The
proofs were very rigorous.

In the late 50’s to the late 70’s the debate between
Bayesians and non-Bayesians became acrimonious.

Savage persevered.



Jimmie Savage

Savage developed much of the Bayesian statistics in use
today.

His PhD students were Morris DeGroot and Don Berry
who both continued his work on making Bayesian
inference the foundations of modern statistics. Bayesian
inference is now not controversial, in either
mathematical statistics or its many applications
(economics, biostatistics, F.D.A.).

His many contributions to statistics, mathematics,
economics (Milton Friedman, M.A. Gershick), biology
and medicine have stood the test of time.

http://www-history.mcs.st-and.ac.uk/Biographies/Savage.html



David Blackwell

 

  

David Blackwell, was born in Centralia IL in 1919 
and died in 2010.  He went to elementary school 
and high school in Centralia.  He entered the 
University of Illinois in Urbana-Champagne and 
earned a bachelors degree in math in 1938, a 
masters in 1939, and a PhD in 1941 at the age of 
22.  Like Savage, he did a post-doc at the 
Institute for Advanced Study in 1941-2 and was a 
Fellow at Princeton.  After his post doc he 
applied to all 105 HBCU’s for a position.  He also 
applied to Berkeley where Neyman supported 
him but others had race-based objections.  He 
had appointments at Southern University (Baton 
Rouge), Clarke College and Howard in 1944.  He 
visited Berkeley for one year and was then hired 
there as Professor, in the newly formed Statistics 
Department. 



He is known for the Rao-Blackwell theorem. If X
denoted data, and g(X ) is any estimator of a parameter
θ, then the conditional expectation of g(X )|T (X ) is also
an estimator and is typically a better estimator. It
cannot be a worse estimator – “Rao-Blackwellization”.

His collaboration with Girshick led to the classic book
Theory of Games and Statistical Decisions by David
Blackwell and M.A. Girshick.

He worked on dynamic programming for use in optimal
sequential statistial decision making and design.

His book Basic Statistics 1969 was the first fully
Bayesian introductory textbook.



Preface

This book indicates the content of a lower-division
basic statistics course I have taught several times
at Berkeley. The students come from all
departments of the university, and many of them
have forgotten high-school algebra. The
mathematical level of the course is modest: Any
student who can do arithmetic, substitute in simple
formulas, plot points, and draw a smooth curve
through plotted points is ready for the course. But
he must be prepared to think seriously about
frivolous examples, as balls in urns are used to
illustrate practically every idea introduced. The
approach is intuitive, informal, concrete,
decision-theoretic, and Bayesian.



David Blackwell’s Conversation

Jimmie Savage “had just one influence, but it was a big one”.

he explained to me that the Bayes approach was
the right way to do inference. Let me tell you how
that happened. . . an economist came in one day to
talk to me. He said that he had a problem. They
were preparing a recommendation to the Air Force
on how to divide their research budget over the
next 5 years and, in particular, they had to decide
what fraction of it should be devoted to long-range
research and what fraction of it should be devoted
to developmental research.



”Now,” he said, ”one of the things that
this depends upon is the probability of a
major war in the next five years. If it’s
large then, of course, that would shift the
emphasis towards developing what we
already know how to do, and if it’s small
then there would be more emphasis on
long-range research. . . . ”if you could give
me any guide as to how I could go about
finding such a number I would be grateful”



”‘Oh, I said to him, that question just
does not make sense. Probability applies
to a long sequence of repeatable events,
and this is clearly a unique situation. The
probability is either 0 or 1, but we won;t
know for 5 years, I pontificated”’ [Laughs]



‘So the economist looked at me and
nodded and said ‘I was afraid you were
going to say that. I have spoken to several
other statisticians and they have all told
me the same thing. Thank you very
much”’.



A couple of weeks later Jimmie Savage
came to visit . . .. I happened to mention
this conversation that I had had, and then
he started telling me about deFinetti and
personal probability. Anyway, I walked out
of his office half an hour later with a
completely different view on things. I now
understood what was the right way to do
statistical inference



‘Looking back on it, I can see that I was
emotionally and intellectually prepared for
Jimmie’s message because I had been
thinking in a Bayesian way about
sequential analysis, hypothesis testing, and
other statistical problems for some years.’



A Conversation with David Blackwell

DeGroot: Let’s talk a little bit about the current
state of statistics. What areas do you think are
particularly important these days? Where do you
see the field going?
Blackwell: I can tell you what I’d like to see
happen. First, of course, I would like to see more
emphasis on Bayesian statistics. . . ..



Finally

DeGroot: You have a reputation as one of the
finest lecturers in the field. Is that your style of
lecturing?
Blackwell: I guess it is. I try to emphasize that
with students. I notice that when students are
talking about their theses or about their work, they
want to tell you everything they know. So I say to
them: You know much more about this topic than
anybody else. We’ll never understand it if you tell it
all to us. Pick just one interesting thing. Maybe
two.
DeGroot: Thank you, David.



David Blackwell

 

Kenneth Arrow, David Blackwell and M.A. Girshick,  
Santa Monica September 1948 
 
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.ss/11
77013814  
 

From “A Conversation with David Blackwell” by 
Morris DeGroot in Statistical Science vol. 1, 1989 
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